cho tam giács abc có ab<ac<bc tia phân giác của góc a cắt bc tại d tia phân giác của góc b cắt ac tại e hai tia phân giác ad và be cắt nhau tại i
a. so sánh ia và ib
b. so sánh bd và cd
giúp mk nha mk đang cần gấp á
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABE và tam giác ACF
Góc AEB = Góc AFC = 90 độ
Cạnh huyền AB=AC (theo giả thiết)
Góc A chung
Do đó: Tam giác ABE = Tam giác ACF (Cạnh huyền - góc nhọn )
Suy ra: AE=AF (2 cạnh tương ứng)
Xét tam giác AFH và tam giác AEH có:
Góc AFH= góc AEH = 90 độ
Cạnh huyền AH chung
AF=AE ( Chứng minh trên)
Do đó: tam giác AFH = tam giác AEH ( cạnh huyền cạnh góc vuông)
Suy ra góc FAH= góc EAH ( 2 góc tương ứng)
Hay GÓC BAH= GÓC CAH
Xét tam giác ABH và tam giác ACH có:
AB=AC( theo gt)
Góc BAH = Góc CAH ( chứng minh trên)
Cạnh AH chung
Do đó: tam giác ABH = tam giác ACH (c.g.c)
Vậy tam giác ABH = tam giác ACH (đpcm)
b) Vì tam giác ABC có AB=AC nên tam giác ABC là tam giác cân tại A, do đó suy ra góc B= góc C
Do Tam giác ABE = Tam giác ACF ( theo câu a ) nên suy ra BE=FC ( 2 cạnh tương ứng )
Ta có: AFC + CFB = 180 Độ (2 góc kề bù)
AEB + EBC = 180 độ ( 2 góc kề bù )
Mà AFC=AEB vì cùng bằng 90 độ nên CFB=BEC
Xét tam giác BFC và tam giác CEB có:
FB=EC ( chứng mình trên)
Góc B= góc C ( Theo trên)
Cạnh BC chung
Do đó tam giác BFC=tam giác CEB ( cạnh góc cạnh)
Vậy tam giác EBC= tam giác FCB (đpcm)
đề thiếu vẽ đường trung trực của BC cắt AC tại D, bài này khó nên tớ rút gọn vài chổ
Vẽ BD là phân giác của \(\widehat{ABC}\)
a) Ta có thể dễ dàng chứng minh được \(\Delta BAD=\Delta BID\) theo trường hợp cạnh huyền góc nhọn
\(\Rightarrow AD=ID\left(3\right);AB=BI\left(1\right)\) ( hai cạnh tương ứng )
Ta có \(\widehat{ADB}+\widehat{BDI}+\widehat{IDC}=180^o\left(kb\right)\)
mà \(\widehat{ADB}=\widehat{BDI}\left(\Delta BAD=\Delta BID\right)\)
\(\Leftrightarrow\widehat{ADB}=60^o;\widehat{BDI}=60^o;\widehat{IDC}=60^o\)
Ta có thế dễ dàng chứng minh được
\(\Delta BID=\Delta CID\left(g-c-g\right)\)( \(\widehat{BDI}=\widehat{IDC}=60^o\); ID LÀ CẠNH CHUNG; \(\widehat{BID}=\widehat{CID}=90^o\))
\(\Rightarrow BI=IC\left(2\right)\)
TỪ (1) và (2)
\(\Rightarrow AB=IC\)
Có AE = AD (4)
TỪ (3) VÀ (4)
\(\Rightarrow AE=ID\)
xét \(\Delta BAE\)và\(\Delta CID\)có
\(AB=CI\left(cmt\right);\widehat{EAB}=\widehat{DIC}=90^o;AE=ID\left(cmt\right)\)
\(\Rightarrow\Delta BAE=\Delta CID\left(c-g-c\right)\)
\(\Rightarrow BE=CD\left(đpcm\right)\)
b,c mình làm sau
Xét tam giác ABC và tam giác AED có
\(\hept{\begin{cases}A:gócchung\\\frac{AE}{AB}=\frac{AD}{AC}\left(\frac{8}{20}=\frac{6}{15}\right)\end{cases}}\)
Vậy tam giác ABC đồng dạng với tam giác AED (c-g-c)
easy :>
Ta có : \(\frac{AE}{AB}=\frac{6}{15}=\frac{2}{5} ;\frac{ AD}{AC}=\frac{8}{20}=\frac{2}{5}\)
\(\Rightarrow\frac{AE}{AB}=\frac{AB}{AC}\)
Xét 2 tam giác : ADE và ACB có :
\(\widehat{A}\)chung
\(\frac{AE}{AB}=\frac{AB}{AC}\)
\(\Rightarrow\Delta ADE~\Delta ACB\left(TH2\right)\)
bài 2:
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
bài 2:
ta có: AB <AC <BC (Vì 3cm <4cm <5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
HT mik làm giống bạn Dương Mạnh Quyết
Bài 3:
a: Xét ΔABD và ΔACD có
AB=AC
AD chung
BD=CD
Do đó: ΔABD=ΔACD
b: Ta có: ΔABD=ΔACD
nên \(\widehat{BAD}=\widehat{CAD}\)
c: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là đường cao