Cho: \(M=\frac{x^2-5}{x^2-2}\left(x\in Z\right)\)
Tìm \(x\in Z\) để \(M\in Z\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow-x^3-x⋮x^2-2\)
\(\Leftrightarrow-x^3+2x-3x⋮x^2-2\)
\(\Leftrightarrow-3x^2⋮x^2-2\)
\(\Leftrightarrow x^2-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(x\in\left\{1;-1;2;-2\right\}\)
1.a.
\(\left(x+1\right)\left(x+2\right)\left(x-2\right)\left(x+5\right)\ge m\)
\(\Leftrightarrow\left(x^2+3x+2\right)\left(x^2+3x-10\right)\ge m\)
Đặt \(x^2+3x-10=t\ge-\dfrac{49}{4}\)
\(\Rightarrow\left(t+2\right)t\ge m\Leftrightarrow t^2+2t\ge m\)
Xét \(f\left(t\right)=t^2+2t\) với \(t\ge-\dfrac{49}{4}\)
\(-\dfrac{b}{2a}=-1\) ; \(f\left(-1\right)=-1\) ; \(f\left(-\dfrac{49}{4}\right)=\dfrac{2009}{16}\)
\(\Rightarrow f\left(t\right)\ge-1\)
\(\Rightarrow\) BPT đúng với mọi x khi \(m\le-1\)
Có 30 giá trị nguyên của m
1b.
Với \(x=0\) BPT luôn đúng
Với \(x\ne0\) BPT tương đương:
\(\dfrac{\left(x^2-2x+4\right)\left(x^2+3x+4\right)}{x^2}\ge m\)
\(\Leftrightarrow\left(x+\dfrac{4}{x}-2\right)\left(x+\dfrac{4}{x}+3\right)\ge m\)
Đặt \(x+\dfrac{4}{x}-2=t\) \(\Rightarrow\left[{}\begin{matrix}t\ge2\\t\le-6\end{matrix}\right.\)
\(\Rightarrow t\left(t+5\right)\ge m\Leftrightarrow t^2+5t\ge m\)
Xét hàm \(f\left(t\right)=t^2+5t\) trên \(D=(-\infty;-6]\cup[2;+\infty)\)
\(-\dfrac{b}{2a}=-\dfrac{5}{2}\notin D\) ; \(f\left(-6\right)=6\) ; \(f\left(2\right)=14\)
\(\Rightarrow f\left(t\right)\ge6\)
\(\Rightarrow m\le6\)
Vậy có 37 giá trị nguyên của m thỏa mãn
Câu 1) a) ĐKXĐ \(x\ge0,\)\(x\ne4\)A=\(\frac{x+2\sqrt{x}-4}{2\left(x-4\right)}\)b) Mình chưa làm được Câu 2) a) ĐKXĐ \(x>0,\)\(x\ne4\)A=\(\frac{\sqrt{x}-1}{\sqrt{x}}\)b) Để a<\(\frac{1}{2}\)\(\Rightarrow\)\(\frac{\sqrt{x}-1}{\sqrt{x}}< \frac{1}{2}\)\(\Rightarrow x< 1\)\(\Rightarrow0< x< 1\)thỏa mãn bài toán c) Ta có A=\(\frac{\sqrt{x}-1}{\sqrt{x}}=1-\frac{1}{\sqrt{x}}\), để A \(\in Z\)\(\Rightarrow\sqrt{x}\inƯ\left(1\right)\), \(\Rightarrow x=1\)( thỏa mãn ĐK)
a, 4C = 12|x|+8/4|x|-5 = 3 + 23/|x|-5 <= 3 + 23/0-5 = -8/5
=> C <= -2/5
Dấu "=" xảy ra <=> x=0
Vậy Min ...
b, Để C thuộc N => 3|x|+2 chia hết cho 4|x|-5
=> 4.(3|x|+2) chia hết cho 4|x|-5
<=> 12|x|+8 chia hết cho 4|x|-5
<=> 3.(|x|+5) + 23 chia hết cho 4|x|-5
=> 23 chia hết chi 4|x|-5 [ vì 3.(4|x|-5) chia hết cho 4|x|-5 ]
Đến đó bạn tìm ước của 23 rùi giải
Câu 1
A lớn nhất khi và chỉ khi 9-x nhỏ nhất
=>9-x=số nguyên dương nhỏ nhất(Điều kiện x khác 9)
=>9-x=1
x=8
Vậy với x=8 thì A đạt giá lớn nhất(2012)
Câu 2
Để M thuộc Z thì \(\frac{x^2-5}{x^2-2}=1-\frac{3}{x^2-2}\)Thuộc Z
=>x2-2 thuộc Ư(3)={-3;-1;1;3}
lần lượt tìm được các x=-1;1
Vậy x=-1;1 thì M thuộc Z
a, 4C = 12|x|+8/4|x|-5 = 3 + 23/|x|-5 <= 3 + 23/0-5 = -8/5
=> C <= -2/5
Dấu "=" xảy ra <=> x=0
Vậy Min ...
b, Để C thuộc N => 3|x|+2 chia hết cho 4|x|-5
=> 4.(3|x|+2) chia hết cho 4|x|-5
<=> 12|x|+8 chia hết cho 4|x|-5
<=> 3.(|x|+5) + 23 chia hết cho 4|x|-5
=> 23 chia hết chi 4|x|-5 [ vì 3.(4|x|-5) chia hết cho 4|x|-5 ]
Đến đó bạn tìm ước của 23 rùi giải
M = \(\frac{2\sqrt{x}-9x}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\left(\sqrt{x}+3\right)\left(3-\sqrt{x}\right)+\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)}\)
=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}+\frac{9-x+2x-3\sqrt{x}}{x-5\sqrt{x}+6}\)
=\(\frac{x-\sqrt{x}}{x-5\sqrt{x}+6}\)
â) \(A=\left(\frac{x}{x+4}+\frac{4}{x-4}\right):\frac{x^2+16}{x+2}\)
\(=\left(\frac{x\left(x-4\right)+4\left(x+4\right)}{\left(x+4\right)\left(x-4\right)}\right)=\left(\frac{x^2+16}{x^2-16}\right):\frac{x^2+16}{x+2}\)
\(=\frac{x+2}{x^2-16}\left(đpcm\right)\)
a) \(A=\left(\frac{x}{x+4}+\frac{4}{x-4}\right):\frac{x^2+16}{x+2}\)
\(A=\frac{x\left(x-4\right)+4\left(x+4\right)}{\left(x+4\right)\left(x-4\right)}.\frac{x+2}{x^2+16}\)
\(A=\frac{x^2-4x+4x+16}{x^2-16}.\frac{x+2}{x^2+16}\)
\(A=\frac{x^2+16}{x^2-16}.\frac{x+2}{x^2+16}\)
\(A=\frac{x+2}{x^2-16}\left(đpcm\right)\)
Viết: \(M=\frac{x^2-2-3}{x^2-2}=1-\frac{3}{x^2-2}\)
\(M\in Z\)khi và chỉ khi \(x^2-2\)là ước của 3. Ước của 3 là: -3;-1;1;3. Lần lượt ta có:
Vậy x=1 hoặc = -1 thì M nhận giá trị nguyên.
Để M nguyen thi x^2-5 chia het cho x^2-2
ma x^2-5=(x^2-2)-3
Vì x^2-2 chia hết cho x^2-2 suy ra x^2-5 chia hết cho x^2-2 khi và chỉ khi 3 chia hết cho x^2-2
suy ra x^2-2 là ước của 3
suy ra x^2 -2 nhận các giá trị là -3,-1,1,3
Nếu ......
còn lại tự làm ha