\(So^2:a,333^{444}va444^{333}\)
\(b,199^{20}va2003^{15}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : 333444=(3334)111=(111*81)111
444333=(4443)111=(111*64)111
suy ra 333444>444333
mk giải xong rồi đó
Ta có:333^444=(3x111)^4x111
333^444=(3^4)^111
333^444=81^111
Ta có:444^333=(4x111)^3x111
444^333=(4^3)^111
444^333=64^111
Vì 81 > 64.Nên 81^111 > 64^111
Vậy 333^444 > 444^333.
2 ) So sánh 333^444 và 444^333:
Có 333^444=(333^4)^111 và 444^333=(444^3)^111
Như vậy ta cần so sánh 333^4 và 444^3:
Vì 333^4/444^3=3^4*111^4/(4^3*111^3)=3^4*11... nên 333^4>444^3 do đó
333^444>444^333
1,\(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\Rightarrow\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)
Aps dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}=\frac{12x+12y+12z}{18+16+15}=\frac{12\left(x+y+z\right)}{49}=\frac{12.147}{49}=\frac{1764}{49}\)=36
\(\Rightarrow\hept{\begin{cases}x=36.18:12=54\\y=36.16:12=48\\z=36.15:12=45\end{cases}}\)
Vậy:.......
a) \(333^{444}\)
= \(333^{4.111}=\left(333^4\right)^{111}\)
\(444^{333}=444^{3.111}=\left(444^3\right)^{111}\)
vì hai lũy thừa cùng số mũ nên ta so sánh \(333^4\text{ và }444^3\)
ta có : \(333^4=\left(3.111\right)^4=3^4.111^4=81.111^4\)
\(444^3=\left(4.111\right)^3=4^3.111^3=64.111^3\)
Vì \(81.111^4>64.111^3\) nên \(333^{444}>444^{333}\)
a) Ta có :
6255 = (54)5 = 520
1257= (53)7= 521
Vì 520 < 521
Nên 6255 < 1257
c) Ta có :
1630 = (24)30 = 2120
Vì 2120 > 2100
Nên 1630 > 2100
d) Ta có :
3450 = (33)150 = 9150
5300 = (52)150 = 25150
Vì 9150 < 25150
Nên 3450 < 5300
e) Ta có :
333444 = ( 3 . 111 )444 = 3444 . 111444 = (34)111 . 111444= 81111 . 111444
444333= ( 4. 111)333 = 4333 . 111333 = (43)111 . 111333 = 64111 . 111333
Vì 81111 > 64111 và 111444 > 111333
nên 333444 > 444333
a, Ta có : 648 = (43)8 = 424
1612 = (42)12 = 424
Vì 424 = 424 => 648 = 1612
b)
\(199^{20}< 200^{20}=200^{15}\cdot200^5=200^{15}\cdot2^5\cdot100^5=B\)(1)
mà \(2^5=32< 10^5\)=> \(B< 200^{15}\cdot10^5\cdot10^{10}=200^{15}\cdot10^{15}=2000^{15}< 2003^{15}\)
Vậy, \(199^{20}< 2003^{15}\).
a)
Ta có: \(81>64\Rightarrow3^4>4^3\Rightarrow\left(3^4\right)^{111}>\left(4^3\right)^{111}\Rightarrow3^{444}>4^{333}\)(1)
Ta lại có \(111^{444}>111^{333}\)(2)
Nhân (1) và (2) vế với vế ta được: \(3^{444}\cdot111^{444}>4^{333}\cdot111^{333}\Rightarrow\left(3\cdot111\right)^{444}>\left(4\cdot111\right)^{333}\)
Hay: \(333^{444}>444^{333}\).