Tập hợp các số nguyên x thõa mãn \(\frac{\left(x-1\right)\left(x+5\right)}{\left(x-1\right)\left(2x+6\right)}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left|4x-8\right|\le8\)
\(\Leftrightarrow\left(\left|4x-8\right|\right)^2\le64\)
\(\Leftrightarrow16x^2-64x+64\le64\)
\(\Leftrightarrow16x^2-64x\le0\)
\(\Leftrightarrow16x\left(x-4\right)\le0\)
\(\Leftrightarrow0\le x\le4\)
b, \(\left|x-5\right|\le4\)
\(\Leftrightarrow\left(\left|x-5\right|\right)^2\le16\)
\(\Leftrightarrow x^2-10x+25\le16\)
\(\Leftrightarrow x^2-10x+9\le0\)
\(\Leftrightarrow1\le x\le9\)
\(\Rightarrow x\in\left\{1;2;3;4;5;6;7;8;9\right\}\)
c, \(\left|2x+1\right|< 3x\)
TH1: \(x\ge-\dfrac{1}{2}\)
\(\left|2x+1\right|< 3x\)
\(\Leftrightarrow2x+1< 3x\)
\(\Leftrightarrow x>1\)
\(\Rightarrow\left\{{}\begin{matrix}x\in Z\\x\in\left(1;2018\right)\end{matrix}\right.\)
TH2: \(x< -\dfrac{1}{2}\)
\(\left|2x+1\right|< 3x\)
\(\Leftrightarrow-2x-1< 3x\)
\(\Leftrightarrow x>-\dfrac{1}{5}\left(l\right)\)
Vậy \(\left\{{}\begin{matrix}x\in Z\\x\in\left(1;2018\right)\end{matrix}\right.\)
TH1: 2x-5<0; x+1>0
=>x<2,5;x>-1
=>-1<x<2,5
Mà x thuộc Z
=>x thuộc {0;1;2}
TH2: 2x-5>0; x+1<0
=>x>2,5; x<-1 (Vô lí)
Vậy x thuộc {0;-1;2}.
\(\Sigma\dfrac{a^2}{\left(2a+b\right)\left(2a+c\right)}=\Sigma\left(\dfrac{1}{9}.\dfrac{a^2\left(2+1\right)^2}{2a.\left(\Sigma a\right)+2a^2+bc}\right)\le\Sigma\left(\dfrac{1}{9}.\dfrac{4a^2}{2a\left(\Sigma a\right)}+\dfrac{1}{9}.\dfrac{a^2}{2a^2+bc}\right)\)
\(=\Sigma\left(\dfrac{1}{9}.\left(\dfrac{2a}{\Sigma a}+\dfrac{a^2}{2a^2+bc}\right)\right)=\dfrac{1}{9}\left(2+\Sigma\dfrac{a^2}{2a^2+bc}\right)\)
Cần chứng minh \(\Sigma\frac{a^2}{2a^2+bc}\le1\)
<=> \(\Sigma\frac{bc}{2a^2+bc}\ge1\) (*)
Đặt (x;y;z) -------> \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\)
Suy ra (*) <=> \(\Sigma\frac{x^2}{x^2+2xy}\ge1\Leftrightarrow\frac{\Sigma x^2}{\Sigma x^2}\ge1\) (đúng)
Vậy \(\Sigma\frac{a^2}{2a^2+bc}\le1\)
Suy ra \(\Sigma\frac{a^2}{\left(2a+b\right)\left(2a+c\right)}\le\frac{1}{9}\left(2+\Sigma\frac{a^2}{2a^2+bc}\right)\le\frac{1}{9}\left(2+1\right)=\frac{1}{3}\)
Đẳng thức xảy ra <=> x = y = z = 1
ta có : \(x\ne3\) để mẫu khác 0
Vì 2 phân số có cùng mẫu nên
\(\left|x-5\right|=\left|x-1\right|\)
*TH1: \(\begin{cases}x-5\ge0\\x-1\ge0\end{cases}\)
\(x-5=x-1\)
\(0x=4\)
KHông có giá trị x
*TH2:
\(\begin{cases}x-5\le0\\x-1\le0\end{cases}\)
\(-\left(x-5\right)=-\left(x-1\right)\)
\(\Rightarrow-x-5=-x+1\)
\(0x=-4\)
Không có giá trị x
*TH3:
\(\begin{cases}x-1\ge0\\x-5\le0\end{cases}\) \(\Rightarrow\begin{cases}x\ge1\\x\le5\end{cases}\)
\(-\left(x-5\right)=x-1\)
\(\Rightarrow5+1=2x\)
\(\frac{6}{2}=x\)
\(x=3\)
Mà \(x\ne3\)
nên ko có giá trị thỏa mãn
vậy không có giá trị x nguyên thỏa mãn với đề bài
Ta có : \(\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x+2=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-2\end{array}\right.\)
Vậy \(x\in\left\{1;-2\right\}\)
Đây giống bài lớp 6 hơn
\(\frac{\left(x-1\right)\left(x+5\right)}{\left(x-1\right)\left(2x+6\right)}=1\) <=> (x - 1)(x + 5) = (x - 1)(2x + 6)
<=> x + 5 = 2x + 6 (cùng chia cả 2 vế cho x - 1)
<=> 0 = x + 1 (cùng bớt cả 2 vế đi x và 5)
<=. x = 0 - 1
<=> x = -1