K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=1+1-10=-10

21 tháng 1

Ta có tính chất: \(\dfrac{a}{b}>\dfrac{a-m}{b-m}\)

\(A=\dfrac{2022^{99}-1}{2022^{100}-1}>\dfrac{2022^{99}-1-2021}{2022^{100}-1-2021}\)

\(A>\dfrac{2022^{99}-2022}{2022^{100}-2022}\)

\(A>\dfrac{2022\left(2022^{98}-1\right)}{2022\left(2022^{99}-1\right)}\)

\(A>\dfrac{2022^{98}-1}{2022^{99}-1}\)

\(A>B\)

19 tháng 2 2022

giúp vơi

 

 

19 tháng 2 2022

noooooooooooooooooooooooooooooooooooooooooooooooooo

29 tháng 10 2023

Ta có:

\(2023^{2022}=2023\cdot2023^{2021}\)

\(2022^{2022}+2022^{2021}=2022^{2021}\cdot\left(2022+1\right)=2023\cdot2022^{2021}\)

Mà: \(2023>2022\)

\(\Rightarrow2023^{2021}>2022^{2021}\)

\(\Rightarrow2023^{2021}\cdot2023>2022^{2021}\cdot2023\)

\(\Rightarrow2023^{2022}>2022^{2022}+2022^{2021}\) 

Vậy: ... 

6 tháng 1

\(3B=1.3^2+2.3^3+3.3^4+...+2022.3^{2023}+2023.3^{2024}\)

\(2B=3B-B=-3-3^2-3^3-...-3^{2023}+2023.3^{2024}\)

\(2B=2023.3^{2024}-\left(3+3^2+3^3+...+3^{2023}\right)\)

Đặt 

\(C=3+3^2+3^3+...+3^{2023}\)

\(3C=3^2+3^3+3^4+...+3^{2024}\)

\(2C=3C-C=3^{2024}-3\Rightarrow C=\dfrac{3^{2024}-3}{2}\)

\(\Rightarrow2B=2023.3^{2024}-\dfrac{3^{2024}-3}{2}=\)

\(=\dfrac{2.2023.3^{2024}-3^{2024}+3}{2}=\dfrac{4045.3^{2024}+3}{2}\)

\(\Rightarrow B=\dfrac{4045.3^{2024}+3}{4}\)

23 tháng 3 2023

bn cho mình gửi sắp đến thi học kì 2 rồi. đây là những món quà mà bn sẽ nhận đc:
1: áo quần
2: tiền
3: đc nhiều người yêu quý
4: may mắn cả
5: luôn vui vẻ trong cuộc sống
6: đc crush thích thầm
7: học giỏi
8: trở nên xinh đẹp
phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người, sau 3 ngày bn sẽ có những đc điều đó. nếu bn ko gửi tin nhắn này cho 25 người thì bn sẽ luôn gặp xui xẻo, học kì 2 bn sẽ là học sinh yếu và bạn bè xa lánh( lời nguyền sẽ bắt đầu từ khi đọc) ( mình
 cũng bị ép);-;

5 tháng 8 2023

bạn không nên gửi những thứ linh tinh này vào olm nhé. Có người bị ám cả đời vì đọc rồi đấy

19 tháng 9 2023

tôi không biết làm nhưng tính ra kết quả bằng 25

3 tháng 1

\(A=3^{2022}-2^{2022}+3^{2020}-2^{2020}\\=(3^{2022}+3^{2020})-(2^{2022}+2^{2020})\\=3^{2020}\cdot(3^2+1)-2^{2020}\cdot(2^2+1)\\=3^{2020}\cdot10-2^{2019}\cdot2\cdot5\\=3^{2020}\cdot10-2^{2019}\cdot10\)

Ta có: \(\left\{{}\begin{matrix}3^{2020}\cdot10⋮10\\2^{2019}\cdot10⋮10\end{matrix}\right.\)

\(\Rightarrow3^{2020}\cdot10-2^{2019}\cdot10⋮10\)

hay \(A⋮10\) (đpcm)

\(\text{#}Toru\)

\(=2^4\cdot\left(197-97\right)+1=1600+1=1601\)

30 tháng 9 2023

\(S=1+3^2+3^4+...+3^{2022}\)

\(3^2S=9S=3^2+3^4+3^6+...+3^{2024}\)

\(S=\dfrac{9S-S}{8}=\left(3^{2024}-1\right):8\)

d, không đáp án nào đúng

AH
Akai Haruma
Giáo viên
30 tháng 9 2023

Lời giải:

$S=1+3^2+3^4+....+3^{2022}$

$9S=3^2S=3^2+3^4+3^6+...+3^{2024}$

$\Rightarrow 9S-S=3^{2024}-1$

$\Rightarrow S=\frac{3^{2024}-1}{8}$

Đáp án D.