'cho 3 số dương abc thỏa mãn a+b+c >=3. chứng minh a^2+1/b+c + b^2+1/c+a + c^2+1/a+b >=3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Lê Văn Hoàng - Toán lớp 9 - Học toán với OnlineMath
cho 3 số dương a,b,c thỏa mãn abc = 1 và a+b+c > 1/a + 1/b + 1/. chứng minh rằng (a-1)(b-1)(c-1) > 0
Vì abc=1 nên có: \(a^3+b^3+c^3+3=\frac{a^3+b^3+c^3}{abc}+3=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}\)
\(\ge\frac{4a^2}{\left(b+c\right)^2}+\frac{4b^2}{\left(c+a\right)^2}+\frac{4c^2}{\left(a+b\right)^2}+3\)(1)
Đặt: \(\frac{a}{b+c}=X;\frac{b}{c+a}=Y;\frac{c}{a+b}=Z\)
Ta có: \(4X^2+4Y^2+4Z^2+3-4X-4Y-4Z=\left(2X-1\right)^2+\left(2Y-1\right)^2+\left(2Z-1\right)^2\ge0\)
=> \(4Z^2+4Y^2+4Z^2+3\ge4X+4Y+4Z=4\left(X+Y+Z\right)\)
=> \(\frac{4a^2}{\left(b+c\right)^2}+\frac{4b^2}{\left(c+a\right)^2}+\frac{4c^2}{\left(a+b\right)^2}+3\ge4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
=> \(a^3+b^3+c^3+3\ge4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
"=" xảy ra <=> a =b =c =1.\(\)