1 + 2 + 3 + 4 + 5 + ... + 99 + 100
2 + 4 + 6 + ... + 2020 + 2022
2/2*5 + 2/5*7 + ... + 2/99*101
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101
=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4
=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)
=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101
=> 4A = 99*100*101*102
=> 4A = 101989800
=> A = 25497450
1) 1-2+3-4+...+99-100
=(1-2)+(3-4)+...+(99-100)
= -1.(100:2)
= -50
2) 2-4+6-8+...+48-50
=(2-4)+(6-8)+...+(48-50)
= -2.(50:2)
= -50
3)
=(-1+3-5)+...+(-95+97-99)
= -3.(99:3)
=-99
4)
=(1+2-3-4+5)+...+(-96+97+98-99-100)
= 1.(100:5)
= 20
Chúc bạn học tốt
tớ nghĩ là phải nhân tổng trong ngoặc với ssh chia số số hạng trong ngoặc chứ
B=1+2-(3+4)+5+6-..-100+101
B=(3+11+19+...+195)-(7+15+...+199)+101
B=25.99-25.103+101
B=-100+101=1
Vậy B=1
a)\(1-2+3-4+5-6+7-8+8-9+9-10\)
=\(\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+\left(7-8\right)+\left(8-9\right)+\left(9-10\right)\)
\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)\)
\(=\left(-1\right).6\)
\(=-6\)
b)\(1-2+3-4+...+99-100\)
\(=\left(1-2\right)+\left(3-4\right)+...+\left(99-100\right)\)}\(\left[\left(100-1\right):1+1\right]:2=50\)(cặp)
\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)} 50 số (-1)
\(=\left(-1\right).50\)
\(=-50\)
c)\(1-3+5-7+9-11+13-15\)
\(=\left(1-3\right)+\left(5-7\right)+\left(9-11\right)+\left(13-15\right)\)
\(=\left(-2\right)+\left(-2\right)+\left(-2\right)+\left(-2\right)\)
\(=\left(-2\right).4\)
\(=-8\)
d)\(1-3+5-7+...-99+101\) (Đối với bài này, có vẻ đề sai, mình đã sửa lại rồi
\(=\left(1-3\right)+\left(5-7\right)+...+\left(97-99\right)+101\) } \(\left[\left(99-1\right):2+1\right]:2=25\)(cặp)
\(=\left(-2\right)+\left(-2\right)+\left(-2\right)+...+\left(-2\right)\) } 25 số (-2)
\(=\left(-2\right).25\)
\(=-50\)
e)\(-1-2-3-4-...-99-100\)
\(=\left(-1\right)+\left(-2\right)+\left(-3\right)+...+\left(-99\right)+\left(-100\right)\)
\(=\left[\left(-1\right)+\left(-100\right)\right]+\left[\left(-2\right)+\left(-99\right)\right]+...+\left[\left(-51\right)+\left(-50\right)\right]\) } \(\left[\left(100-1\right):1+1\right]:2=50\)(cặp) (phần này của đề bài, không thay được như (-100) hoặc (-1))
\(=\left(-100\right)+\left(-100\right)+\left(-100\right)+...+\left(-100\right)\)} 50 số (-100)
\(=\left(-100\right).50\)
\(=-5000\)
a) Số lượng số hạng trong tổng trên là:
( 100 - 1 ) + 1= 100 ( số )
Tổng đó là: ( 100 + 1 ) x 100 : 2= 5 050
Đáp số: 5 050
b) Số lượng số hạng trong tổng trên là:
( 2 022 - 2 ) : 2 + 1 = 1 011 ( số )
Tổng đó là: ( 2 022 + 2 ) x 1 011 : 2 = 1 023 132
Đáp số: 1 023 132
c) 2/2.5 + 2/5.7 + .... + 2/99.101
= 1/2 - 1/5 + 1/5 - 1/7 + ... + 1/99 - 1/101
= 1/2 - 1/101
= 99/202
a)1+2+3+4+5+...+99+100
Số số hạng của dãy là:
(100-1):1+1=100(số hạng)
Tổng dãy số trên là:
(100+1)x100:2=5050
b)2 + 4 + 6 + ... + 2020 + 2022
Vì khoảng cách của mỗi số hạng là 2
Số số hạng của dãy là:
(2022-2):2+1=1011(số hạng)
Tổng dãy số trên là:
(2022+2)x1011:2=1023132
c)\(\frac{2}{2x5}+\frac{2}{5x7}+...+\frac{2}{99x101}\)
\(=\frac{2}{3}x\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{2}{3}x\left(\frac{1}{2}-\frac{1}{101}\right)\)
\(=\frac{2}{3}x\left(\frac{99}{202}\right)\)
\(=\frac{33}{101}\)