cho tam giác ABC cân tại A , điểm D thuộc tia đói của CB . So sánh AD và AB bằng cách xét hai hình chiếu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hạ đường cao AH của tam giác ABC. => H nằm giữa B và C (1)
D thuộc tia đối của CB => C nằm giữa B và D (2)
Từ (1) và (2) => C nằm giữa H và D => HC<HD (3)
Mà AH là đơngf vuông góc => AC và AD là đường xiên (4)
Từ (3) và (4) => AC<AD (Quan hệ đường xiên hình chiếu). Mà AC=AB => AB<AD.
Vậy AB<AD.
a: Xét ΔACD có \(\widehat{ACD}\) là góc tù
nên AD là cạnh lớn nhất
Suy ra: AD>AC
hay AD>AB
a: Xét ΔABC có AB<AC
mà BH là hình chiếu của AB trên BC
và CH là hình chiếu của AC trên BC
nên HB<HC
Ta có:AB<AC
nên \(\widehat{B}>\widehat{C}\)
hay \(\widehat{BAH}< \widehat{CAH}\)
b: Ta có: \(\widehat{BAD}+\widehat{CAD}=90^0\)
\(\widehat{BDA}+\widehat{HAD}=90^0\)
mà \(\widehat{CAD}=\widehat{HAD}\)
nên \(\widehat{BAD}=\widehat{BDA}\)
hay ΔBDA cân tại B
a: BC=8cm
BC>AC
=>góc A>góc B
b: XétΔABD có
AC vừa là đường cao, vừa là trung tuyến
=>ΔABD cân tại A
c: GB+2GC=GB+GA>AB
ΔABCcân tại A⇒AB=AC
D nằm trên tia đối của tia CB ⇒BC<BD
ta có: BC<BD
⇒AC<AD mà AB=AC
⇒AB<AD