hãy chứng minh:3+4=1,7+5=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=27+53+46+34+79
A=(27+53)+(46+34)+79
A=80+80+79
A=160+79
A=239
B=-377-98+277
B=-377+277-98
B=(-377+277)-98
B=-100-98
B=-198
C = -1,7 . 2,3 + 1,7 . ( -3,7 ) - 1,7 . 3 - 0,17 : 0,1
= -1,7.2,3+(-1,7).3,7+(-1,7).3+(-1,7)
=(-1,7).(2,3+3,7+3+1)
=-1,7.10
=-17
****nha
Bài 1:
a) Ta có: \(A=-1.7\cdot2.3+1.7\cdot\left(-3.7\right)-1.7\cdot3-0.17:0.1\)
\(=1.7\cdot\left(-2.3\right)+1.7\cdot\left(-3.7\right)+1.7\cdot\left(-3\right)+1.7\cdot\left(-1\right)\)
\(=1.7\cdot\left(-2.3-3.7-3-1\right)\)
\(=-10\cdot1.7=-17\)
b) Ta có: \(B=2\dfrac{3}{4}\cdot\left(-0.4\right)-1\dfrac{2}{3}\cdot2.75+\left(-1.2\right):\dfrac{4}{11}\)
\(=\dfrac{11}{4}\cdot\left(-0.4\right)-\dfrac{5}{3}\cdot\dfrac{11}{4}+\left(-1.2\right)\cdot\dfrac{11}{4}\)
\(=\dfrac{11}{4}\left(-0.4-\dfrac{5}{3}-1.2\right)\)
\(=-\dfrac{539}{60}\)
c) Ta có: \(C=\dfrac{\left(2^3\cdot5\cdot7\right)\cdot\left(5^2\cdot7^3\right)}{\left(2\cdot5\cdot7^2\right)^2}\)
\(=\dfrac{2^3\cdot5^3\cdot7^4}{2^2\cdot5^2\cdot7^4}\)
\(=10\)
Số lượng số hạng:
\(\left(9999-1\right):1+1=9999\) (số hạng)
Tổng dãy số:
\(\left(9999+1\right)\cdot9999:2=49995000\)
Mà 49995000 không phải số chính phương
2n + 5 chia 2n + 3 dư 2
2n + 3 chia 2n + 1 dư 2
Không chứng minh được !
Ta có : 1+4+4^2+.............+4^15 có 16 số hạng
Mà 16 : 2 =8
\(\Rightarrow\)(1+4)+(4^2+4^3)+..............+(4^14+4^15)
\(\Rightarrow\)(1+4)+(1+4).4+...........+(1+4)4^13
\(\Rightarrow\)(1+4)(1+4+......+4^13)
\(\Rightarrow\)5(1+4+.....+4^13) \(⋮\)5 (ĐPCM)
`5+5^2+5^3+5^4`
`=5(1+5+5^2+5^3)`
`=5(1+5+25+125)`
`=5(1+25)+5(5+125)`
`=5.26+5.130`
`=130+130.5 vdots 130(đpcm)`
Mẫu 1:
+) Số trung bình: \(\overline x = \frac{{0,1 + 0,3 + 0,5 + 0,5 + 0,3 + 0,7}}{6} = 0,4\)
+) Phương sai \({S^2} = \frac{1}{6}\left( {0,{1^2} + 0,{3^2} + 0,{5^2} + 0,{5^2} + 0,{3^2} + 0,{7^2}} \right) - 0,{4^2} \approx 0,0367\)
+) Độ lệch chuẩn \(S = \sqrt {{S^2}} \approx 0,19\)
Mẫu 2:
+) Số trung bình: \(\overline x = \frac{{1,1 + 1,3 + 1,5 + 1,5 + 1,3 + 1,7}}{6} = 1,4\)
+) Phương sai \({S^2} = \frac{1}{6}\left( {1,{1^2} + 1,{3^2} + 1,{5^2} + 1,{5^2} + 1,{3^2} + 1,{7^2}} \right) - 1,{4^2} \approx 0,0367\)
+) Độ lệch chuẩn \(S = \sqrt {{S^2}} \approx 0,19\)
Mẫu 3:
+) Số trung bình: \(\overline x = \frac{{1 + 3 + 5 + 5 + 3 + 7}}{6} = 4\)
+) Phương sai \({S^2} = \frac{1}{6}\left( {{1^2} + {3^2} + {5^2} + {5^2} + {3^2} + {7^2}} \right) - {4^2} \approx 3,67\)
+) Độ lệch chuẩn \(S = \sqrt {{S^2}} \approx 1,9\)
Kết luận:
Số liệu ở mẫu 2 hơn số liệu ở mẫu 1 là 1 đơn vị, số trung bình của mẫu 2 hơn số trung bình mẫu 1 là 1 đơn vị, còn phương sai và độ lệch chuẩn là như nhau.
Số liệu ở mẫu 3 gấp 10 lần số liệu mẫu 1, số trung bình, phương sai và độ lệch chuẩn của mẫu 3 lần lượt gấp 10 lần, 100 lần và 10 lần mẫu 1.
a) Đặt A = \(6^5.5-3^5\)
\(=\left(2.3\right)^5.5-3^5\)
\(=2^5.3^5.5-3^5\)
\(=3^5.\left(2^5.5-1\right)\)
\(=3^5.\left(32.5-1\right)\)
\(=3^5.159\)
\(=3^5.3.53⋮53\)
Vậy \(A⋮53\)
b) Đặt \(B=2+2^2+2^3+...+2^{120}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{119}+2^{120}\right)\)
\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{119}.\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{119}.3\)
\(=3.\left(2+2^3+...+2^{59}\right)⋮3\)
Vậy \(B⋮3\)
\(B=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)
\(=2.\left(1+2+2^2\right)+3^4.\left(1+2+2^2\right)+...+2^{118}.\left(1+2+2^2\right)\)
\(=2.7+2^4.7+...+2^{118}.7\)
\(=7.\left(2+2^4+...+2^{118}\right)⋮7\)
Vậy \(B⋮7\)
\(B=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)\)
\(+...+\left(2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)
\(=2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)\)
\(+2^{116}.\left(1+2+2^2+2^3+2^4\right)\)
\(=2.31+2^6.31+...+2^{116}.31\)
\(=31.\left(2+2^6+...+2^{116}\right)⋮31\)
Vậy \(B⋮31\)
\(B=\left(2+2^2+2^3+2^4+2^5+2^6+2^7+2^8\right)+\left(2^9+2^{10}+2^{11}+2^{12}+2^{13}+2^{14}+2^{15}+2^{16}\right)\)
\(+...+\left(2^{113}+2^{114}+2^{115}+2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)
\(=2.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)+2^9.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)\)
\(+...+2^{113}.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)\)
\(=2.255+2^9.255+...+2^{113}.255\)
\(=255.\left(2+2^9+...+2^{113}\right)\)
\(=17.15.\left(2+2^9+...+2^{113}\right)⋮17\)
Vậy \(B⋮17\)
c) Đặt C = \(3^{4n+1}+2^{4n+1}\)
Ta có:
\(3^{4n+1}=\left(3^4\right)^n.3\)
\(2^{4n}=\left(2^4\right)^n.2\)
\(3^4\equiv1\left(mod10\right)\)
\(\Rightarrow\left(3^4\right)^n\equiv1^n\left(mod10\right)\equiv1\left(mod10\right)\)
\(\Rightarrow3^{4n+1}\equiv\left(3^4\right)^n.3\left(mod10\right)\equiv1.3\left(mod10\right)\equiv3\left(mod10\right)\)
\(\Rightarrow\) Chữ số tận cùng của \(3^{4n+1}\) là \(3\)
\(2^4\equiv6\left(mod10\right)\)
\(\Rightarrow\left(2^4\right)^n\equiv6^n\left(mod10\right)\equiv6\left(mod10\right)\)
\(\Rightarrow2^{4n+1}\equiv\left(2^4\right)^n.2\left(mod10\right)\equiv6.2\left(mod10\right)\equiv2\left(mod10\right)\)
\(\Rightarrow\) Chữ số tận cùng của \(2^{4n+1}\) là \(2\)
\(\Rightarrow\) Chữ số tận cùng của C là 5
\(\Rightarrow C⋮5\)
làm gì có như thế ,chứng minh linh tinhc
3 ngày + 4 ngày = 1 tuần
7 tháng + 5 tháng = 1 năm
/HT\