K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2022

Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=20cm\)

Vì AD là pg 

\(\dfrac{AB}{AC}=\dfrac{BD}{CD}\Rightarrow\dfrac{CD}{AC}=\dfrac{BD}{AB}\)

Theo tc dãy tỉ số bằng nhau 

\(\dfrac{CD}{AC}=\dfrac{BD}{AB}=\dfrac{BC}{AC+AC}=\dfrac{20}{28}=\dfrac{5}{7}\Rightarrow CD=\dfrac{80}{7}cm;BD=\dfrac{60}{7}cm\)

27 tháng 2 2022

Áp dụng định lí pitago, ta có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{12^2+16^2}=\sqrt{400}=20cm\)

Ta có: AD là đường phân giác góc A nên:

\(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)

\(\Leftrightarrow\dfrac{12}{16}=\dfrac{BD}{CD}\Leftrightarrow\dfrac{3}{4}=\dfrac{BD}{CD}\)

\(\Leftrightarrow\dfrac{CD}{4}=\dfrac{BD}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{CD}{4}=\dfrac{BD}{3}=\dfrac{CD+BD}{4+3}=\dfrac{20}{7}\)

\(\Rightarrow CD=\dfrac{20}{7}.4=\dfrac{80}{7}\)

\(\Rightarrow BD=\dfrac{20}{7}.3=\dfrac{60}{7}\)

16 tháng 5 2015

Tự vẽ hình nha

a) xét tam giác HAB và tam giác ABC

góc AHB = góc ABC

góc CAB : chung

Suy ra : tam giác AHB ~ tam giác ABC ( g-g )

b) Áp dụng định lí py - ta - go vào tam giác ABC ta được :

AC2 + AB2 = BC2

162 + 122 = BC2

400          = BC2

=> BC = \(\sqrt{400}\)= 20 ( cm )

ta có tam giác HAB ~ tam giác ABC ( câu a )

=> \(\frac{AH}{AC}=\frac{AB}{BC}hay\frac{AH}{16}=\frac{12}{20}\)

=> AH = \(\frac{12.16}{20}=9,6\)( cm )

Độ dài cạnh BH là 

Áp dụng định lí py - ta - go vào tam giác HBA ta được : 

AH+ BH2 = AB2

BH2          = AB2 - AH2

BH2             = 122 - 9,62

BH2              = 51,84 

=> BH       = \(\sqrt{51,84}\) = 7,2 ( cm )

c) Vì AD là đường phân giác của tam giác ABC nên :

\(\frac{AB}{BD}=\frac{AC}{CD}\Leftrightarrow\frac{AB}{BC-CD}=\frac{AC}{CD}\)

                    <=>   \(\frac{AB.CD}{CD\left(BC-CD\right)}=\frac{AC\left(BC-CD\right)}{CD\left(BC-CD\right)}\)

                    <=>   AB.CD               =   AC(BC - CD)

                    hay   12CD                 =   16.20 - 16CD

                     <=>  12CD+ 16CD      =   320

                     <=>             28CD      =   320

                     <=>                 CD     =    \(\frac{320}{28}\approx11.43\left(cm\right)\)

Độ dài cạnh BD là :

BD = BC - CD

BD = 20 - \(\frac{320}{28}\)\(\approx\) 8,57 ( cm )

16 tháng 5 2015

Cho hỏi đồng dạng là sao bạn???Tớ mới học lớp 7 thôi,nên chưa biết ^^

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)

\(BH=\sqrt{12^2-9.6^2}=7.2\left(cm\right)\)

21 tháng 5 2021

a) Xét ΔHBA và ΔABC có

\(\widehat{B }\) chung

\(\widehat{BHA}=\widehat{BAC}\)=90o

=> ΔHBA ∼ ΔABC (gg)

b) xét ΔABC có \(\widehat{BAC} \)=90o

=> AC2+AB2=BC2 (đl pitago)

=>162+122=BC2

=> BC=20 cm

Ta có SΔABC=\(\dfrac{AB.AC}{2}=\dfrac{AH.BC}{2}\)

=> AB.AC=AH.BC

=>12.16=AH.20

=> AH=9.6

Xét ΔABH có \(\widehat{BHA}\)=90o

=> HA2+HB2=AB2 (đl pitago)

=>9.62 + HB2=122

=> HB=7.2 cm

c) Xét ΔABC có

AD là phân giác (D∈BC)

=> \(\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{12}{16}=\dfrac{3}{4}\)(tc đường pg trong Δ)

=>\(\dfrac{BD}{BC-BD}=\dfrac{3}{4}\)=>\(\dfrac{BD}{20-BD}=\dfrac{3}{4}\)

=> BD=\(\dfrac{60}{7}\) cm

=> CD=20 - \(\dfrac{60}{7}\)=\(\dfrac{80}{7}\) cm

d) Xét ΔAHC có

KN // HC (MN//BC , K ∈ MN , H∈ BC,(K∈AH ,N∈AC))

=> \(\dfrac{AN}{AC}=\dfrac{AK}{AH}=\dfrac{KN}{HC}\)( hệ quả đl ta-lét)

=>\(\dfrac{AN}{AC}=\dfrac{3.6}{9.6}=\dfrac{KN}{HC}\)

Xét ΔABC có

MN// BC (M∈AB ,N∈AC)

=> \(\dfrac{AN}{AC}=\dfrac{MN}{BC}\)=>\(\dfrac{3.6}{9.6}=\dfrac{MN}{20}\) => MN =7.5 cm

KH=AH-KH =9.6-3.6=6 cm

Xét tg MNCB có MN//BC 

=> tg MNCB là hình bình hành (dhnb)

có AH⊥BC => KH⊥BC (K∈AH)

=> SBMNC = \(\dfrac{KH.\left(MN+BC\right)}{2}\)=\(\dfrac{6.\left(7.5+20\right)}{2}\)=82.5cm2

Sửa đề: AD là đường phân giác

a) Tính BC

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=12^2+16^2=400\)

hay BC=20(cm)

Vậy: BC=20cm

b) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{BD}{12}=\dfrac{CD}{16}\)

mà BD+CD=BC(D nằm giữa B và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{12}=\dfrac{CD}{16}=\dfrac{BD+CD}{12+16}=\dfrac{BC}{28}=\dfrac{20}{28}=\dfrac{5}{7}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{BD}{12}=\dfrac{5}{7}\\\dfrac{CD}{16}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=\dfrac{60}{7}\left(cm\right)\\CD=\dfrac{80}{7}\left(cm\right)\end{matrix}\right.\)

Vậy: \(BD=\dfrac{60}{7}cm\)\(CD=\dfrac{80}{7}cm\)

a: ΔACB vuông tại A co AH vuông góc BC

nên AB^2=BH*BC

b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=16/8=2

=>AD=6cm

25 tháng 2 2020

Do bạn SSBĐ Love HT  làm được câu a) rồi nên mình làm nốt câu b) còn lại nhé :

A B C D H

a) Ta tính được : \(BC=20cm,BD=DC=10cm\)

b)  Do \(\Delta ABC\) vuông ở A, có \(AH\perp BC\)

\(\Rightarrow S_{ABC}=\frac{1}{2}\cdot AB\cdot AC=\frac{1}{2}\cdot AH\cdot BC\)

\(\Leftrightarrow12\cdot16=AH\cdot20\)

\(\Leftrightarrow AH=\frac{48}{5}\left(cm\right)\)

Áp dụng định lý Pytago cho các tam giác vuông ta có :

+) \(\Delta ABH\) vuông tại H \(\Rightarrow AB^2=AH^2+BH^2\)

\(\Leftrightarrow12^2=\left(\frac{48}{5}\right)^2+BH^2\)

\(\Leftrightarrow BH=\frac{36}{5}\left(cm\right)\)

\(\Rightarrow HD=BD-BH=10-\frac{36}{5}=\frac{14}{5}\left(cm\right)\)

+) \(\Delta AHD\) vuông tại H \(\Rightarrow AD^2=AH^2+HD^2\)

\(\Rightarrow AD^2=\left(\frac{48}{5}\right)^2+\left(\frac{14}{5}\right)^2\)

\(\Rightarrow AD=10cm\)

Vậy : \(AH=\frac{48}{5}\left(cm\right),HD=\frac{14}{5}\left(cm\right),AD=10\left(cm\right)\)

25 tháng 2 2020

a)ΔABC vuông tại A

Áp dụng định lí Pitago:

⇒ BC=\(\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20cm\)

AD là tia phân giác ta có:

\(\frac{AB}{AC}\)=\(\frac{BD}{DC}\)Hay \(\frac{AB}{AC}\)=\(\frac{BD}{BC-BD}\)=\(\frac{12}{16}\)=\(\frac{3}{4}\)

\(\Rightarrow\frac{BD}{20-BD}\)=\(\frac{3}{4}\)\(\rightarrow\)4BD=60-3BD⇒ BD=8\(\times\)6cm

⇒ CD=BC-BD=20-8,6=11,4cm

b)Xét ΔAHB và ΔABC

\(\widehat{CAB}\)là góc chung

\(\widehat{AHB}=\widehat{ABC}\)

⇒ΔAHB đồng dạng ΔABC

\(\frac{AH}{AC}\)=\(\frac{AB}{AC}\)

⇒AH=\(\frac{AC\times AB}{BC}\)=\(\frac{16-12}{20}\)=\(9,6cm\)

Áp dụng hệ thức lượng : BH=\(\frac{36}{5}\);\(CH=\frac{64}{5}\)

⇒ HD=BD-BH=8\(\times\)6−\(\frac{36}{5}\)=1,4cm

ΔDHA vuông tại H 

⇒AD=\(\sqrt{AH^2+HD^2}=\sqrt{9\times6^2+1\times4^2}=9,7cm\)

Đáp án:a)BC=20cm; BD=8.6cm; CD=11,4cm

b)AH=9.6cm; HD=1.4cm; AD=9.7cm

1: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

Do đó: ΔHBA\(\sim\)ΔABC

2: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=4.8\left(cm\right)\)