Có thể nói số 32010 có ít hơn 1006 chữ số được không
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét VT = 1/ab + 1/(a² + b²) = 1/2ab + 1/(a² + b²) + 1/2ab
Áp dụng bđt: 1/x + 1/y ≥ 4/(x + y) với x, y >0 và với a + b = 1
ta có: 1/2ab + 1/(a² + b²) ≥ 4/(2ab + a² + b²) = 4/(a + b)² = 4
Áp dụng bđt 4xy ≤ (x + y)²
ta có: 1/2ab = 2/4ab ≥ 2/(a + b)² = 2 => VT ≥ 4 + 2 = 6
Dấu "=" xảy ra khi a = b và a + b = 1 nên a = b = ½
Không vì 32002 không thể ít hơn 1002 . Vì
2002 > 1002 . Trong khi đó 32002 thì sẽ lớn hơn gấp bội 1002
Nên 32002 > 1002 , không thể nói 32002 ít hơn 1002 được
Giải thích các bước giải:
Không thể ,vì:
Ta có số mũ: 2002>1002
Mà :
3 2002 đương nhiên sẽ lớn hơn 1002 nhiều lần.
Ta có:
3^2002=*(3^2)^1001.
=9^1001.
Vì 9<10=>9^1001<10^1001.
Mà 10^1001 là số nhỏ nhất có 1002 chữ số(dễ thấy).
=>Có thể nói số trên ít hơn 1002 chữ số
Vậy.........
Một số tự nhiên bất kì có 4 chữ số có dạng \(\overline{abcd}\).
Ta có: \(\overline{abcd}-\overline{dcba}=1006\)
\(\Leftrightarrow a.10^3+b.10^2+c.10+d-\left(d.10^3+c.10^2+b.10+a\right)=1006\)
\(\Leftrightarrow999a+90b-90c-999d=1006\)
\(\Leftrightarrow9\left(111a+10b-10c-111d\right)=1006\).
Ta thấy VT chia hết cho 9 nhưng VP không chia hết cho 9. (Vô lý).
Vì vậy không có một tự nhiên có 4 chữ số nào để hiệu một số tự nhiên đó với số tự nhiên có 4 chữ số được viết theo thứ tự ngược lại bằng 1006
TA CÓ \(3^{2002}=3^{2.1001}=\left(3^2\right)^{1001}\)
\(9^{1001}< 10^{1001}\)
MÀ \(10^{1001}\)là số nhỏ nhất có 10002 chữ số
Vậy số \(3^{2002}\)có ít hơn 1002 chữ số
Không vì:
\(3^7>1002\);mà \(3^{2002}>3^7\)
=>\(3^{2002}>1002\)
k vì 2010 đã có 2010 chữ số 3
ý câu hỏi là : Tính 32010 có ít hơn 1006 chữ số ko