K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) bn cần chứng minh tam giác ADB = tam giác ADC (c.c.c)

=> góc DAB = góc DAC

=> AD là phân giác của góc BAC

b) tam giác ABC cân tại A, mà góc A = 200 (gt) => góc ABC = (1800 - 200) : 2 = 800

 tam giác ABC đều nên góc DBC = 600

tia BD nằm giữa 2 tia BA và BC => góc ABD = 800 - 600 = 200

tia BM là phân giác của góc ABD => góc  ABM = 100

xét tam giác ABM và tam giác BAD có:

AB chung

góc BAM = góc ABD = 200

góc ABM = góc DAB = 100

=> tam giác ABM = tam giác BAD (g.c.g)

=> AM = BC (cạnh tương ứng)

t i c k nhé!! 564765478

13 tháng 12 2021

Tham Khảo:

 

Bài 5

Vẽ hình, ghi GT, KL đúng    0,5đ

a. Chứng minh ΔADB = ΔADC (c - c - c)   1đ

Suy ra \widehat {DAB} = \widehat {DAC}

Do đó: \widehat {DAB} = 200 : 2 = 100

b. Ta có: ΔABC cân tại A, mà \widehat A = 200 (gt) nên \widehat {ABC} = (1800 - 200) : 2 = 800

ΔABC đều nên \widehat {DBC} = 600

Tia BD nằm giữa hai tia BA và BC suy ra \widehat {ABD} = 800 - 600 = 200

Tia BM là tia phân giác của góc ABD nên \widehat {ABM} = 100

Xét ΔABM và ΔBAD ta có:

AB là cạnh chung

\begin{gathered}
 \widehat {BAM} = \widehat {ABD} = {20^0} \hfill \\
 \widehat {ABM} = \widehat {DAB} = {10^0} \hfill \\ 
\end{gathered}

Vậy ΔABM = ΔBAD (g - c - g)

Suy ra AM = BD, mà BD = BC (gt) nên AM = BC

 

13 tháng 12 2021

Bài 6:

Ta có \(8\left(x-2009\right)^2\) chẵn, \(25\) lẻ nên \(y^2\) lẻ

Mà \(25-y^2=8\left(x-2009\right)^2\ge0\Leftrightarrow y^2\le25\)

Mà \(y\in \mathbb{N}\) nên \(y^2\in\left\{1;9;25\right\}\)

Với \(y^2=1\Leftrightarrow8\left(x-2009\right)^2=24\Leftrightarrow\left(x-2009\right)^2=3\left(loại\right)\)

Với \(y^2=9\Leftrightarrow8\left(x-2009\right)^2=16\Leftrightarrow\left(x-2009\right)^2=2\left(loại\right)\)

Với \(y^2=25\Leftrightarrow8\left(x-2009\right)^2=0\Leftrightarrow x-2009=0\Leftrightarrow x=2009\)

Vậy PT có nghiệm \(\left(x;y\right)\) là \(\left(2009;5\right);\left(2009;-5\right)\)

11 tháng 2 2022

chứng minh gì vậy

11 tháng 2 2022

vô TL tui tích

http://d.violet.vn//uploads/resources/285/2783442/preview.swf 

trang 73

1 tháng 2 2016

link này k dùng đc aq///lm ơn gửi link khác dùm mik

21 tháng 1 2017

hình thì cậu tự vẽ còn bài làm thì ở dưới đây:

a) xét tam giác ADB và ADC có: AD chung

                                                DB=DC(vì tam giác DBC đều)

                                                 AB=AC ( tam giác ABC cân tại A)

                            => tam giác ADB=tam giác ADC (c.c.c)

                            =>\(\widehat{ADB}\)\(\widehat{ADC}\)(2 góc tương ứng)

                                  mà AD nằm giữa AB và AC =>AD là tia p/g của góc BAC

21 tháng 1 2017

\(\widehat{BAD}=\widehat{CAD}\) mới đk chứ mà mk cx cảm ơn nhé câu b thì lm sao bạn ơi

26 tháng 5 2021

a) Xét tam giác ADB và ADC có: AD chung

DB=DC(vì tam giác DBC đều)

AB=AC ( tam giác ABC cân tại A)

=> tam giác ADB=tam giác ADC (c.c.c)

=>\(\widehat{ADB}=\widehat{ADC}\)(2 góc tương ứng)

mà AD nằm giữa AB và AC

=>AD là tia p/g của góc BAC

26 tháng 5 2021

b. Ta có: ΔABC cân tại A, mà \widehat A = 200 (gt)

=> \widehat {ABC} = (1800 - 200) : 2 = 800

ΔABC đều nên \widehat {DBC} = 600

Tia BD nằm giữa hai tia BA và BC

=>\widehat {ABD} = 800 - 600 = 200

Tia BM là tia phân giác của góc ABD

=> \widehat {ABM} = 100

Xét ΔABM và ΔBAD ta có:

\(\widehat{ABM}=\widehat{DAB}=10^0\)

AB là cạnh chung

\(\widehat{BAM}=\widehat{ABD}=20^0\)

Vậy ΔABM = ΔBAD (g - c - g)

Suy ra AM = BD

mà BD = BC ( gt )

=> AM = BC