Bạn Cường có 14 quyển vở . Bạn xếp thành 3 chồng . Chứng minh rằng có ít nhất 1 chồng có số vở là số lẻ .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số vở là x
Theo đề, ta có: \(x\in BC\left(10;12;15\right)\)
mà 150<x<200
nên x=180
gọi a là số chồng vở thì 32 phải chia hết cho a. vậy a bằng 2,4,8
số chồng vở | 2 | 4 | 8 |
số quyển vở | 16 | 8 | 4 |
Các cách chia sau của em đâu. Đề bài thiếu rồi em nhá
Gọi số quyển vở mà An, bình, Cường nhận lần lượt là a,b,c
Theo đề, ta có: a/3=b/4=c/5 và a+b+c=48
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{48}{12}=4\)
=>a=12; b=16; c=20
Gọi x (quyển), y (quyển), z (quyển) lần lượt là số quyển vở của An, Bình, Cường nhận được (x, y, z \(\in\) N*)
Do số quyển vở của An, Bình, Cường tỉ lệ thuận với 3; 4; 5 nên:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
Do tổng số quyển vở là 48 nên:
\(x+y+z=48\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y+z}{3+4+5}=\dfrac{48}{12}=4\)
\(\dfrac{x}{3}=4\Rightarrow x=4.3=12\)
\(\dfrac{y}{4}=4\Rightarrow y=4.4=16\)
\(\dfrac{z}{5}=4\Rightarrow z=4.5=20\)
Vậy An nhận được 12 quyển vở
Bình nhận được 16 quyển vở
Cường nhận được 20 quyển vở
3. Làm sao để đặt một chiếc bút trên sàn mà không ai có thể nhảy qua nó?
có trả lời được không
mà ra câu hỏi như thế
Để mình trả lời hộ Đặng Thùy Trang nhé !
Muốn đặt một chiếc bút trên sàn ta để nó ở mép tường ,làm gì có ai nhảy qua chiếc bút chì trong khi phải nhảy qua nó thì phải đi xuyên tường được !
Thế nào thành viên trong nhóm VICTOR do người trưởng nhóm Nguyễn Hoàng Tiến dìu dắt ,là trưởng nhóm cũng ko chịu nổi thị phi nên rút ra khỏi nhóm rồi kìa ,thế mà vẫn còn những thành viên dư tàn còn lại đi làm những chuyện chẳng ai nể phục !