Giải phương trình (x+1)(x+2)(x+3)=x3−1.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^3+2\left(x-1\right)^2-2\left(x-1\right)\left(x+1\right)=x^3+x-4-\left(x-7\right)\).
\(\Leftrightarrow x^3+2\left(x^2-2x+1\right)-2\left(x^2-1\right)=x^3+x-4-x+7\)
\(\Leftrightarrow x^3+2x^2-4x+2-2x^2+2=x^3+3\)
\(\Leftrightarrow x^3-4x+4=x^3+3\)
\(\Leftrightarrow4x-1=0\)
\(\Leftrightarrow x=\frac{1}{4}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{1}{4}\right\}\)
b) \(2\left(x-3\right)+1=2\left(x+1\right)-9\)
\(\Leftrightarrow2x-6+1=2x+2-9\)
\(\Leftrightarrow2x-5=2x-7\)
\(\Leftrightarrow2=0\)(ktm)
Vậy tập nghiệm của phương trình là \(S=\varnothing\)
c) \(3\left(x+1\right)\left(x-1\right)-5=3x^2+2\)
\(\Leftrightarrow3\left(x^2-1\right)-5=3x^2+2\)
\(\Leftrightarrow3x^2-3-5=3x^2+2\)
\(\Leftrightarrow3x^2-8=3x^2+2\)
\(\Leftrightarrow0=10\)(ktm)
Vậy tập nghiệm của phương trình là \(S=\varnothing\)
b: 4(x+1)^2-9(x-1)^2=0
=>(2x+2)^2-(3x-3)^2=0
=>(2x+2-3x+3)(2x+2+3x-3)=0
=>(-x+5)(5x-1)=0
=>x=1/5 hoặc x=5
c: (x-1)^3+x^3+(x+1)^3=(x+2)^3
=>x^3-3x^2+3x-1+x^3+x^3+3x^2+3x+1=x^3+6x^2+12x+8
=>3x^3+6x-x^3-6x^2-12x-8=0
=>2x^3-6x^2-6x-8=0
=>x^3-3x^2-3x-4=0
=>x^3-4x^2+x^2-4x+x-4=0
=>(x-4)(x^2+x+1)=0
=>x-4=0
=>x=4
a, \(\Leftrightarrow\left(9x^2-4\right)\left(x+1\right)-\left(3x+2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(\left(9x^2-4\right)-\left(\left(3x+2\right)\left(x-1\right)\right)\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-\left(3x^2-x-2\right)\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-3x^2+x+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x^2+x-2\right)=0\)
\(\Leftrightarrow\left(x+1\right)=0;3x^2+x-2=0\)
=> x=-1
với \(3x^2+x-2=0\)
ta sử dụng công thức bậc 2 suy ra : \(x=\dfrac{2}{3};x=-1\)
Vậy ghiệm của pt trên \(S\in\left\{-1;\dfrac{2}{3}\right\}\)
b: \(\Leftrightarrow x^2-2x+1-1+x^2=x+3-x^2-3x\)
\(\Leftrightarrow2x^2-2x=-x^2-2x+3\)
\(\Leftrightarrow3x^2=3\)
hay \(x\in\left\{1;-1\right\}\)
c: \(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-3\right)-\left(x-1\right)\left(x-2\right)\left(x+2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+1\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-2x-3-x^2-3x+10\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(-5x+7\right)=0\)
hay \(x\in\left\{1;-2;\dfrac{7}{5}\right\}\)
a:
Sửa đề: \(\dfrac{1}{x-1}-\dfrac{3x^2}{x^3-1}=\dfrac{2x}{x^2+x+1}\)
=>x^2+x+1-3x^2=2x(x-1)
=>-2x^2+x+1-2x^2+2x=0
=>-4x^2+3x+1=0
=>4x^2-3x-1=0
=>4x^2-4x+x-1=0
=>(x-1)(4x+1)=0
=>x=1(loại) hoặc x=-1/4(nhận)
b: =>2x+6x=x+3(2x+1)
=>x+6x+3=8x
=>7x+3=8x
=>-x=-3
=>x=3(nhận)
d, PT \(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)-8=x\left(x^3+1\right)-\left(x-4\right)\left(5x+1\right)\)
\(\Leftrightarrow x^4-x^2-4x^2+4-8=x^4+x-5x^2+20x-x+4\)
\(\Leftrightarrow x^4-x^2-4x^2+4-8-x^4-x+5x^2-20x+x-4=0\)
\(\Leftrightarrow-8-20x=0\)
\(\Leftrightarrow x=-\dfrac{8}{20}=-\dfrac{2}{5}\)
Vậy ....
( đoạn kia mk nghĩ là x -2 và x + 2 :vvv )
Đáp án C
x − 2 − x 3 + x 2 = x − 4 3 − 1 ⇔ 2 x − 2 − x 6 + 3 x 6 = 2 x − 4 6 − 6 6 ⇔ − 4 x − 2 x 2 + 3 x = 2 x − 8 − 6 ⇔ − 2 x 2 − 3 x + 14 = 0 t a c ó Δ = − 3 2 − 4. − 2 .14 = 121 ⇒ Δ = 11 ⇒ x 1 = 3 − 11 2. − 2 = 2 ; ⇒ x 2 = 3 + 11 2. − 2 = − 7 2
i,<=>(2x - 1)(2x - 1 + 2 - x) = 0 <=> (2x - 1)(x + 1) = 0
<=> x = 1/2 hoặc x = -1
j,<=>(x - 1)(5x + 3) - (3x - 5)(x - 1) = 0
<=>(x - 1)(2x + 8) = 0 <=> x = 1 hoặc x = -4
k,<=>4(x + 5)(x - 6) = 0 <=> (x + 5)(x - 6) = 0
<=> x = -5 hoặc x = 6
m,<=>x^2(x + 1) + x + 1 = 0
<=>(x^2 + 1)(x + 1) = 0 (1)
Mà x^2 + 1 > 0 với mọi x nên (1) xảy ra <=> x + 1 = 0
<=> x = -1
1: \(\Leftrightarrow\left(x-3\right)\left(x+3\right)-\left(x-3\right)\left(5x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(-4x+1\right)=0\)
hay \(x\in\left\{3;\dfrac{1}{4}\right\}\)
2: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)-\left(x-1\right)\left(x^2-2x+16\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1-x^2+2x-16\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x-15\right)=0\)
hay \(x\in\left\{1;5\right\}\)
3: \(\Leftrightarrow\left(x-1\right)\left(4x^2-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)\left(2x+1\right)=0\)
hay \(x\in\left\{1;\dfrac{1}{2};-\dfrac{1}{2}\right\}\)
4: \(\Leftrightarrow x^2\left(x+4\right)-9\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-3\right)\left(x+3\right)=0\)
hay \(x\in\left\{-4;3;-3\right\}\)
5: \(\Leftrightarrow\left[{}\begin{matrix}3x+5=x-1\\3x+5=1-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-6\\4x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-1\end{matrix}\right.\)
6: \(\Leftrightarrow\left(6x+3\right)^2-\left(2x-10\right)^2=0\)
\(\Leftrightarrow\left(6x+3-2x+10\right)\left(6x+3+2x-10\right)=0\)
\(\Leftrightarrow\left(4x+13\right)\left(8x-7\right)=0\)
hay \(x\in\left\{-\dfrac{13}{4};\dfrac{7}{8}\right\}\)
1.
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=\left(x-3\right)\left(5x-2\right)\)
\(\Leftrightarrow x+3=5x-2\)
\(\Leftrightarrow4x=5\Leftrightarrow x=\dfrac{5}{4}\)
2.
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=\left(x-1\right)\left(x^2-2x+16\right)\)
\(\Leftrightarrow x^2+x+1=x^2-2x+16\)
\(\Leftrightarrow3x=15\Leftrightarrow x=5\)
3.
\(\Leftrightarrow4x^2\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(4x^2-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2};x=-\dfrac{1}{2}\end{matrix}\right.\)
(x + 1)(x + 2)(x + 3) = x3 - 1
=> x3 + 6x2 + 11x + 6 - x3 + 1 = 0
=> 6x2 + 11x + 7 = 0
Vì 6x2 + 11x + 7 > 0 => vô nghiệm
Vậy \(x\in\phi\)