Có thể nói 3^2010 có ít hơn 1006 chữ số không ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không vì 32002 không thể ít hơn 1002 . Vì
2002 > 1002 . Trong khi đó 32002 thì sẽ lớn hơn gấp bội 1002
Nên 32002 > 1002 , không thể nói 32002 ít hơn 1002 được
Ta có:
3^2002=*(3^2)^1001.
=9^1001.
Vì 9<10=>9^1001<10^1001.
Mà 10^1001 là số nhỏ nhất có 1002 chữ số(dễ thấy).
=>Có thể nói số trên ít hơn 1002 chữ số
Vậy.........
Giải thích các bước giải:
Không thể ,vì:
Ta có số mũ: 2002>1002
Mà :
3 2002 đương nhiên sẽ lớn hơn 1002 nhiều lần.
TA CÓ \(3^{2002}=3^{2.1001}=\left(3^2\right)^{1001}\)
\(9^{1001}< 10^{1001}\)
MÀ \(10^{1001}\)là số nhỏ nhất có 10002 chữ số
Vậy số \(3^{2002}\)có ít hơn 1002 chữ số
Không vì:
\(3^7>1002\);mà \(3^{2002}>3^7\)
=>\(3^{2002}>1002\)
1. a. \(3^{2010}=\left(3^2\right)^{1005}=9^{1005}\)
Vì \(9^{1005}< 10^{1005}\)
nên \(3^{2010}< 10^{1005}\)
b. Ta có :
\(3^{2010}=3.3.3.3....3\)( 2010 chữ số 3 )
\(\Rightarrow3^{2010}=\left(3.3\right)\left(3.3\right)\left(3.3\right)...\left(3.3\right)=9.9.9.9...9\)( 1005 chữ số 9 )
Xét \(9.9.9...9.9< 9.10.10.10...10=90000...00\) ( 1004 chữ số 0 và 1 chữ số 9 ). Nghĩa là có 1005 chữ số
Vậy \(3^{2010}\) có ít hơn 1006 chữ số
1.a)Ta có 32010 = (32)1005 = 91005 < 101005
=> 32010 < 101005
b) Vì 32010 < 101005 (cmt)
mà 101005 là số có 1005 chữ số
=> 32010 là số có ít hơn 1006 chữ số
2. a) Ta có 333444 = (3.111)444 = 3444.111444 = (34)111 . 111444 = 81111.111444 > 8111. 111444
=> 333444 > 8111. 111444
b) Ta có 333444 (3.111)444 = 3444.111444 = (34)111.111444 = 81111.111444 (1)
Lại có 444333 = (4.111)333 = 4333.111333 = (43)111.111333 = 64111.111333 (2)
Từ (1)(2) => 333444 > 444333
Xét VT = 1/ab + 1/(a² + b²) = 1/2ab + 1/(a² + b²) + 1/2ab
Áp dụng bđt: 1/x + 1/y ≥ 4/(x + y) với x, y >0 và với a + b = 1
ta có: 1/2ab + 1/(a² + b²) ≥ 4/(2ab + a² + b²) = 4/(a + b)² = 4
Áp dụng bđt 4xy ≤ (x + y)²
ta có: 1/2ab = 2/4ab ≥ 2/(a + b)² = 2 => VT ≥ 4 + 2 = 6
Dấu "=" xảy ra khi a = b và a + b = 1 nên a = b = ½
VT là gì