K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Dễ thấy P là điểm chính giữa \widebatEF nên D,N,P thẳng hàng

Cần chứng minh IMC^=PDC^

Ta có : IMC^=MIB^+B1^=12BIC^+B1^=12(180o−B1^−C1^)+B1^

=12(180o−ABC^2−ACB^2)+ABC^2=90o+ABC^4−ACB^4

PDC^=PDE^+EDC^=12EDF^+EDC^=12(180o−FDB^−EDC^)+EDC^

=90o−FDB^2+EDC^2=90o−90o−B1^2+90o−C1^2

=90o+ABC^4−ACB^4

⇒IMC^=PDC^⇒IM//ND

b) Theo câu a suy ra MID^=IDP^

Mà ΔPIDcân tại I ( do IP = ID ) nên IPD^=IDP^

Suy ra MID^=IPD^=QPN^

⇒ΔIDM≈ΔPQN(g.g)

c) từ câu b ⇒IMPN=IDPQ=IPPQ( 1 ) 

Theo hệ thức lượng, ta có : IQ.IA=IE2=IP2

Do đó : QPIP=1−IQIP=1−IPIA=PAIA

Suy ra  IPQP=IAPA( 2 )

Từ ( 1 ) và ( 2 ) ⇒IMPN=IAPAkết hợp với IM // PN suy ra A,M,N thẳng hàng

21 tháng 9 2018

Bạn vẽ hình lên đi, rồi mình giải cho

21 tháng 9 2018

Bạn kham khảo bài của bạn vũ tiền châu tại link:

Câu hỏi của Nhóc vậy - Toán lớp 9 - Học toán với OnlineMath

Bài 1: Cho tam giác ABC cân tại A, nội tiếp đường tròn(O). Đường cao AH cắt đường tròn ở D.a) Vì sao AD là đường kính của đường tròn(O)b) Tính góc ∠ACDc) Cho BC = 24cm; AC = 20cm. Tính đường cao AH và bán kính đường tròn(O)Bài 2: Cho tam giác ABC nội tiếp đường tròn (O;R). Gọi M là trung điểm BC. Giả sử O nằm trong tam giác AMC hoặc O nằm giữa A và M. Gọi I là trung điểm AC. CMR:a) Chu vi tam giác...
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A, nội tiếp đường tròn(O). Đường cao AH cắt đường tròn ở D.
a) Vì sao AD là đường kính của đường tròn(O)

b) Tính góc ∠ACD
c) Cho BC = 24cm; AC = 20cm. Tính đường cao AH và bán kính đường tròn(O)

Bài 2: Cho tam giác ABC nội tiếp đường tròn (O;R). Gọi M là trung điểm BC. Giả sử O nằm trong tam giác AMC hoặc O nằm giữa A và M. Gọi I là trung điểm AC. CMR:

a) Chu vi tam giác IMC lớn hơn 2R
b) Chu vi tam giác ABC lớn hơn 4R

Bài 3: Cho tam giác ABC có D, E, F theo thứ tự là trung điểm BC, CA, AB. G, H, I theo thứ tự là chân đường cao từ đỉnh A, B, C. Trực tâm tam giác ABC là S. J, K, L theo thứ tự là trung điểm của SA, SB, SC. Chứng minh rằng: 9 điểm D, E, F, G, H, I, J, K, L cùng thuộc đường tròn. ( Gợi ý: đường tròn đường kính JD)
Bài 4: Cho tam giác ABC nội tiếp(O), H là trực tâm tam giác ABC. Gọi D, E, F thứ tự là trung điểm của BC, CA, AB. Đường tròn tâm D bán kính DH cắt BC tại A1, A2, đường tròn tâm E bán kính EH cắt CA tại B1, B2, đường tròn tâm F bán kính FH cắt AB tại C1, C2.

a) : Chứng minh 3 đường thẳng DD' , EE' , FF' đồng quy ( DD' song song với OA, EE' song songvới OB, FF' song song với OC ).

b) Chứng minh 6 điểm A1, A2, B1, B2, C1, C2 nằm trên một đường tròn.

1
2 tháng 9 2020

Bài 1 :                                                      Bài giải

Hình tự vẽ //                                       

a) Ta có DOC = cung DC

Vì DOC là góc ở tâm và DAC là góc chắn cung DC

=>DOC = 2 . AOC (1)

mà tam giác AOC cân =>AOC=180-2/AOC (2)

Từ (1) ; (2) ta được DOC + AOC = 180

b) Góc ACD là góc nội tiếp chắn nữa đường tròn

=>ACD=90 độ

c) c) HC=1/2*BC=12

=>AH=căn(20^2-12^2)=16

Ta có Sin(BAO)=12/20=>BAO=36.86989765

=>AOB=180-36.86989765*2=106.2602047

Ta có AB^2=AO^2+OB^2-2*OB*OA*cos(106.2602047)

<=>AO^2+OA^2-2OA^2*cos(106.2602047)=20^2

=>OA=12.5

11 tháng 8 2015

Kẻ IN, DM song song với BC

suy ra IN song song vs DM 

Tam giác EDM có Itrung điểm DE và IN song song vs DM

suy ra In là đương trung binh của tam giác EDM

suy ra N là trung điểm Em

ta có DM song song với BC suy ra DMCB là hình thang 

Mà góc ABC =ACB

nên DMCB là hình thang cân

suy ra  DB =MC

ta lại có DB=AE

suy ra MC =AE

suy ra AE+EN=CM+MN

vậy AN=NC

VẬY N là trung điểm AC

Tam giác ACK có N là trung điểm AC và IN song song với BC

suy ra IN là đường trung bình tam giác AKB 

suy ra I la trung điểm AK 

tứ giác ADKE có I là trung điểm DE và I trung điểm AK

nêm ADKE là hình bình hành vì có hai đường chéo cắt nhau tại trung điểm mỗi đường

 

23 tháng 1 2018

cũng được

16 tháng 9 2016


Triangle poly1: Polygon A, B, C Segment c: Segment [A, B] of Triangle poly1 Segment a: Segment [B, C] of Triangle poly1 Segment b: Segment [C, A] of Triangle poly1 Segment j: Segment [A, G] Segment k: Segment [B, H] Segment l: Segment [I, C] Segment n: Segment [H, G] Segment q: Segment [O, I] Segment r: Segment [O, G] Segment f_1: Segment [A, D] Segment g_1: Segment [O, K] Segment m: Segment [A, H] Segment p: Segment [B, G] Segment s: Segment [E, D] Segment h_1: Segment [H, O] A = (6.37, 4.19) A = (6.37, 4.19) A = (6.37, 4.19) B = (3.15, -2.53) B = (3.15, -2.53) B = (3.15, -2.53) C = (15.4, -3.36) C = (15.4, -3.36) C = (15.4, -3.36) Point F: Midpoint of c Point F: Midpoint of c Point F: Midpoint of c Point D: Midpoint of a Point D: Midpoint of a Point D: Midpoint of a Point E: Midpoint of b Point E: Midpoint of b Point E: Midpoint of b O = (10.6, -2.67) O = (10.6, -2.67) O = (10.6, -2.67) Point I: Intersection point of f, i Point I: Intersection point of f, i Point I: Intersection point of f, i Point G: Intersection point of d, g Point G: Intersection point of d, g Point G: Intersection point of d, g Point H: Intersection point of e, h Point H: Intersection point of e, h Point H: Intersection point of e, h Point K: Intersection point of j, k Point K: Intersection point of j, k Point K: Intersection point of j, k Point J: Intersection point of f_1, g_1 Point J: Intersection point of f_1, g_1 Point J: Intersection point of f_1, g_1

a) DE là đường trung bình tam giác ABC=>DE//AB và DE=\(\frac{1}{2}\)AB

DE là đường trung bình tam giác OGH=>DE//GH và DE=\(\frac{1}{2}\)GH

=> AB//GH và AB=GH => AHGB là hình bình hành => AG và BH cắt nhau tại trung điểm mỗi đường 

CM tương tự: AIGC là hình bình bình hành => AG,IC cắt nhau tại trung điểm mỗi đường 

                     IBCH là hình bình hành => IC,BH cắt nhau tại trung điểm mỗi đường

=> AG,BH,CI đồng quy.

b) K trung điểm AG => OK là trung tuyến tam giác AGO

Mà AD là trung tuyến tam giác AGO ( DG=DO do đối xứng tâm )

=> Giao điểm J của hai đường là trọng tâm tam giác AGO

=> JD =\(\frac{1}{3}\)AD

Mà AD là trung tuyến tam giác ABC

=> J là trọng tâm tam giác ABC

Vậy OK luôn đi qua điểm cố định là trọng tâm tam giác ABC.

16 tháng 9 2016

Lỡ vẽ hình bự quá rồi dán lên nhìn xấu ghê.