cho a,b,c thuộc [0;1]
CMR : a2+b2+c2≤1+a2b+b2c+c2a
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
TH
0
PK
0
NH
1
22 tháng 1 2018
đề bài sai, tui cho VD nè: a = 3; b = 4. Hoàn toàn thỏa mãn giả thiết nhưng ko đúng với đfcm.
KS
2
CN
1
NT
1
BT
22 tháng 1 2018
a(b-c)+b(c-a)+c(a-b)=ab-ac+bc-ab+ac-bc=(ab-ab)+(ac-ac)+(bc-bc)=0+0+0=0
=> đpcm
16 tháng 2 2017
a,b\(\in\) Z, b\(\ne\) 0
Có phân số \(\frac{a}{b}=\frac{a.m}{a.n}\),m,n\(\in\) Z; m,n\(\ne\)0;m\(\ne\)n là \(\frac{0}{b}=\frac{0.m}{b.m};b\in Z,b\ne0\)
Bạn hk tốt nha
Lời giải:
Do $a,b,c\in [0;1]$ nên:
$a^2(1-b)\leq 0$
$b^2(1-c)\leq 0$
$c^2(1-a)\leq 0$
Cộng theo vế suy ra: $a^2+b^2+c^2\leq a^2b+b^2c+c^2a$
Ta có đpcm.
sao lại nhỏ hơn 0 vậy ạ