tìm m để pt có 2 nghiệm phân biệt \(x^2-5x+m-3=0\) để x1, x2 tm \(x1^2-2x1x2+3x2=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, thay m=-2 vào giải chắc bạn làm đc nếu k liên hệ mình giải cho
b, giải sử pt có 2 nghiệm pb, áp dụng hệ thức vi ét ta có: \(x1+x2=2m+2\); \(x1.x2=m-2\Leftrightarrow2.x1.x2=2m-4\)
=> \(x1+x2-2.x1.x2=2m+2-2m+4=6\)=> hệ thức liên hệ k phụ thuộc vào m
2) \(\Delta=4\left(m-3\right)^2+4>0\) với mọi m=> pt luôn có 2 nghiệm pb
áp dụng hệ thức vi ét ta có: \(x1+x2=2m-6\); \(x1.x2=-1\)
câu này bạn xem có sai đề k. loại bài toán áp dụng hệ thức vi ét này k bao giờ có đề là x1-x2 đâu nha
sửa đề rồi liên hệ để mình làm tiếp nha
\(\Delta=25-4m\)pt có 2 nghiệm <=> \(\Delta\ge0\Leftrightarrow25-4m\ge0\Leftrightarrow m\le\frac{25}{4}\)
áp dụng hệ thức vi ét ta có: \(x1+x2=5\) (1) ; \(x1.x2=m\)(2)
|x1-x2|=3
th1: x1-x2=3 <=> x1=3+x2 =>thế vào (1): x2+3+x2=5 <=> 2x2=2 <=> x2=1 =>x1=1+3=4 => x1.x2=m=1.4 => m=4(t/m đk)
th2: x1-x2=-3 <=> x1=-3+x2 => x2-3+x2=5 <=> x2=4 => x1=1 => m=1.4=4 (t/m đk)
=> pt có 2 nghiệm... <=> m=4
Ta có \(\Delta=1-4m\left(m-1\right)>0\)
=> \(-4m^2+4m+1>0\)<=> \(\frac{1-\sqrt{2}}{2}< x< \frac{1+\sqrt{2}}{2}\)
Theo Vi-et ta có
\(\hept{\begin{cases}x_1+x_2=\frac{-1}{m}\\x_1x_2=\frac{m-1}{m}\end{cases}}\)
Ta có \(|\frac{1}{x_1}-\frac{1}{x_2}|>1\)x1,x2 khác 0
<=> \(\frac{1}{x_1^2}+\frac{1}{x_2^2}-\frac{2}{x_1x_2}>1\)
<=> \(\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x^2_1x_2^2}-\frac{2}{x_1x_2}>1\)
<=>\(\left(x_1+x_2\right)^2-4x_1x_2>x^2_1x_{ }_2^2\)
<=> \(\frac{1}{m^2}-\frac{4\left(m-1\right)}{m}>\left(\frac{m-1}{m}\right)^2\)
<=> \(1-4m\left(m-1\right)>\left(m-1\right)^2\)
<=> \(5m^2-6m< 0\)
<=> \(0< m< \frac{6}{5}\)
Kết hợp ta được
\(0< m< \frac{6}{5}\)và \(m\ne1\)do \(x_1,x_2\ne0\)
a) Ta có: \(\Delta'=(\frac{6}{2})^2-m\)
\(=9-m\)
Để phương trình có 2 nghiệm phân biệt thì:
\(\Delta>0\)
\(\Rightarrow 9-m>0\)
\(\Leftrightarrow m<9\)
Vậy khi m < 9 thì phương trình có 2 nghiệm phân biệt
b)Theo định lí Vi-ét ta có:
\(x_1.x_2=\frac{-m}{1}=-m(1)\)
\(x_1+x_2=\frac{-6}{1}=-6\)
Lại có \(x_1=2x_2\)
\(\Rightarrow3x_2=-6\)
\(\Leftrightarrow x_2=-2\)
\(\Rightarrow x_1=-4\)
Thay x1;x2 vào (1) ta được
\(8=m\)
Vậy m-8 thì x1=2x2
Ở trên có đoạn mình đánh lộn \(\Delta'\) ra \(\Delta\) nhé
pt có 2 nghiệm pb <=> \(\Delta=25-4m>0\Leftrightarrow4m
khó thế
Ta giải như sau em nhé :)
Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\Leftrightarrow5^2-4\left(m-3\right)>0\Leftrightarrow37-4m>0\Leftrightarrow m< \frac{37}{4}\)
Khi đó theo Viet ta có: \(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=m-3\end{cases}}\)
Xét hệ \(\hept{\begin{cases}x_1+x_2=5\\x^2_1-2x_1x_2+3x_2=1\end{cases}}\) tìm được 2 nghiệm \(\hept{\begin{cases}x_1=4\\x_2=1\end{cases}}\) hoặc \(\hept{\begin{cases}x_1=\frac{8}{3}\\x_2=\frac{7}{3}\end{cases}}\)
TH1: Ta có: \(4=m-3\Rightarrow m=7\left(tm\right)\)
TH2: Ta có : \(\frac{56}{9}=m-3\Rightarrow m=\frac{83}{9}\left(tm\right)\)
Vậy có 2 giá trị m.
Chúc em học tốt :))