K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2021

\(x^3=3+2\sqrt{2}+3-2\sqrt{2}+3\cdot\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)\\ \Leftrightarrow x^3=6+3x\sqrt[3]{1}\\ \Leftrightarrow x^3-3x=6\)

\(y^3=17+12\sqrt{2}+17-12\sqrt{2}+3\sqrt[3]{\left(17-12\sqrt{2}\right)\left(17+12\sqrt{2}\right)}\left(\sqrt[3]{17-12\sqrt{2}}+\sqrt[3]{17+12\sqrt{2}}\right)\\ \Leftrightarrow y^3=34+3x\sqrt[3]{1}\\ \Leftrightarrow y^3-3y=34\)

Thay vào P, ta được

\(P=x^3+y^3-3x-3y+1979\\ P=\left(x^3-3x\right)+\left(y^3-3y\right)+1979\\ P=6+34+1979=2019\)

 

NV
6 tháng 9 2021

\(x^3=6+3\sqrt[3]{\left(3+2\sqrt[]{2}\right)\left(3-2\sqrt[]{2}\right)}\left(\sqrt[3]{3+2\sqrt[]{2}}+\sqrt[3]{3-2\sqrt[]{2}}\right)\)

\(\Rightarrow x^3=6+3x\)

\(\Rightarrow x^3-3x=6\)

Tương tự:

\(y^3=34+3\sqrt[3]{\left(17+12\sqrt[]{2}\right)\left(17-12\sqrt[]{2}\right)}\left(\sqrt[3]{17+12\sqrt[]{2}}+\sqrt[3]{17-12\sqrt[]{2}}\right)\)

\(\Rightarrow y^3=34+3y\)

\(\Rightarrow y^3-3y=34\)

Do đó:

\(P=\left(x^3-3x\right)+\left(y^3-3y\right)+1979=6+34+1979=...\)

18 tháng 6 2021

Có \(x^3=3+2\sqrt{2}-3\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\right)-\left(3-2\sqrt{2}\right)\)

\(\Leftrightarrow x^3=4\sqrt{2}-3x\) \(\Leftrightarrow x^3+3x=4\sqrt{2}\) (1)

Có \(y^3=17+12\sqrt{2}-3\sqrt[3]{\left(17+12\sqrt{2}\right)\left(17-12\sqrt{2}\right)}\left(\sqrt[3]{17+12\sqrt{2}}-\sqrt[3]{17-12\sqrt{2}}\right)-\left(17-12\sqrt{2}\right)\)

\(\Leftrightarrow y^3=24\sqrt{2}-3y\) \(\Leftrightarrow y^3+3y=24\sqrt{2}\) (2)

Từ (1) (2)\(\Rightarrow x^3+3x-y^3-3y=-20\sqrt{2}\)

Có \(M=\left(x-y\right)^3+3\left(x-y\right)\left(xy+1\right)=\left(x-y\right)\left[\left(x-y\right)^2+3\left(xy+1\right)\right]\)

\(=\left(x-y\right)\left(x^2+xy+y^2+3\right)=x^3-y^3+3\left(x-y\right)=-20\sqrt{2}\)

Vậy \(M=-20\sqrt{2}\)

18 tháng 6 2021

theo bài ra

\(x=\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\)

\(=>x^3=\left(\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\right)^3\)

\(x^3=4\sqrt{2}-3\left[\left(\sqrt[3]{3+2\sqrt{2}}\right)\left(\sqrt[3]{3-2\sqrt{2}}\right)\right]\left[\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\right]\)

\(x^3=4\sqrt{2}-3\left[\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\right].x\)

\(x^3=4\sqrt{2}-3.\left[\sqrt[3]{9-\left(2\sqrt{2}\right)^2}\right]x\)

\(x^3=4\sqrt{2}-3.1x\)

\(x^3=4\sqrt{2}-3x\)

\(< =>x^3+3x-4\sqrt{2}=0\)

rồi làm y tương tự rồi thế vào M là ra

 

5 tháng 10 2021

\(x=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)

\(\Rightarrow x^3=3+2\sqrt{2}+3-2\sqrt{2}+3\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)\)

\(=6+3\sqrt[3]{9-8}.x=6+3x\)

\(\Rightarrow x^3-3x=6\)

\(y=\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17-12\sqrt{2}}\)

\(\Rightarrow y^3=17+12\sqrt{2}+17-12\sqrt{2}+3\sqrt[3]{\left(17+12\sqrt{2}\right)\left(17-12\sqrt{2}\right)}\left(\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17-12\sqrt{2}}\right)\)

\(=34+3\sqrt[3]{289-288}.y=34+3y\)

\(\Rightarrow y^3-3y=34\)

\(P=x^3+y^3-3\left(x+y\right)+2009=\left(x^3-3x\right)+\left(y^3-3y\right)+2009\)

\(=6+34+2009=2049\)

18 tháng 9 2018

Có sai đề k bạn

NV
20 tháng 1 2021

ĐKXĐ: ...

\(y\sqrt{x^2-y^2}=12>0\Rightarrow y>0\)

\(y+\sqrt{x^2-y^2}=12-x\left(x\le12\right)\)

\(\Leftrightarrow y^2+x^2-y^2+2y\sqrt{x^2-y^2}=x^2-24x+144\)

\(\Leftrightarrow y\sqrt{x^2-y^2}=-12x+72\)

\(\Rightarrow-12x+72=12\Rightarrow x=5\)

\(\Rightarrow y\sqrt{25-y^2}=12\Rightarrow y...\) (bình phương 2 vế giải pt trùng phương)

23 tháng 1 2021

đặt \(\sqrt{x+y}=a,\sqrt{x-y}=b\) ta có hệ phương trình sau \(\left\{{}\begin{matrix}a^2+ab=12\\\left(a^2-b^2\right)ab=12\end{matrix}\right.\) \(\Leftrightarrow a^2+ab-ab\left(a^2-b^2\right)=0\) \(\Leftrightarrow a\left(a+b\right)-\left(a+b\right)\left(a-b\right)ab=0\) \(\Leftrightarrow\left(a+b\right)\left(a-a^2b+ab^2\right)=0\)

AH
Akai Haruma
Giáo viên
29 tháng 5 2023

Chứng minh gì bạn?

7 tháng 6 2015

Ta có:\(x^3=3+2\sqrt{2}+3-2\sqrt{2}+3.\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)\)

     \(=\) \(6+\sqrt[3]{9-8}.x\)\(=3x+6\)

Tương tự: \(y^3=3y+34\)

Do đó:\(x^3+y^3-3\left(x+y\right)+2010=3x+6+3y+34-3\left(x+y\right)+2010\)

\(=3\left(x+y\right)-3\left(x+y\right)+34+6+2010=2050\)

25 tháng 1 2018

Cho P=x3+y33(x+y)+2017. Tính P khi x=33+22+3322và yy=317+122+317122

25 tháng 1 2018

cứ lập phương cả x và y là được rồi cộng tổng lại được 2040

2 tháng 6 2017

Ta có:

\(x^3=6+3x.\sqrt[3]{9-8}\Leftrightarrow x^3-3x=6\)

\(y^3=34+3y\sqrt[3]{17^2-12^2.2}\Leftrightarrow y^3-3y=34\)

=>B = 6 + 34 + 2017 =2057

19 tháng 9 2019

Ta có:

x3=6+3x.3√9−8⇔x3−3x=6

y3=34+3y3√172−122.2⇔y3−3y=34

Nên ta suy ra được => B = 6 + 34 + 2017 =2057
Chúc bạn học tốt :)))

21 tháng 12 2016

Co :  X=\(\sqrt[3]{3-2\sqrt{2}}+\sqrt[3]{3+2\sqrt{2}}\)

\(\Leftrightarrow x^3=3-2\sqrt{2}+3+2\sqrt{2}\)+\(3\sqrt[3]{\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)}x\)

\(\Leftrightarrow x^3=6+3x\)

CMTT : \(y^3=34+3y\)\(\)

\(\Leftrightarrow x^3+y^3-3\left(x+y\right)+2014=6+3x+34+3y-3x-3y+2014\)\(=2054\)