Cho hệ phương trình :
3x+my=5
mx-y=1
Chứng minh hệ phương trình có nghiệm duy nhất với mọi m.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)` Thay `m=\sqrt{3}+1` vào hệ ptr có:
`{(\sqrt{3}x-2y=1),(3x+(\sqrt{3}+1)y=1):}`
`<=>{(3x-2\sqrt{3}y=\sqrt{3}),(3x+(\sqrt{3}+1)y=1):}`
`<=>{((3\sqrt{3}+1)y=1-\sqrt{3}),(\sqrt{3}x-2y=1):}`
`<=>{(y=[-5+2\sqrt{3}]/13),(\sqrt{3}x-2[-5+2\sqrt{3}]/13=1):}`
`<=>{(x=[4+\sqrt{3}]/13),(y=[-5+2\sqrt{3}]/13):}`
`b){((m-1)x-2y=1),(3x+my=1):}`
`<=>{(x=[1-my]/3),((m-1)[1-my]/3-2y=1):}`
`<=>{(x=[1-my]/3),(m-m^2y-1+my-6y=3):}`
`<=>{(x=[1-my]/3),((-m^2+m-6)y=4-m):}`
`<=>{(x=[1-my]/3),(y=[4-m]/[-m^2+m-6]):}`
Mà `-m^2+m-6` luôn `ne 0`
`=>AA m` thì đều tìm được `1` giá trị `y` từ đó tìm được `x`
`=>AA m` thì hệ ptr có `1` nghiệm duy nhất
`c){((m-1)x-2y=1),(3x+my=1):}`
`<=>{(x=[1-my]/3),(y=[4-m]/[-m^2+m-6]):}`
`<=>{(x=(1-m[4-m]/[-m^2+m-6]):3),(y=[4-m]/[-m^2+m-6]):}`
`<=>{(x=[-m^2+m-6-4m+m^2]/[-3m^2+3m-18]),(y=[4-m]/[-m^2+m-6]):}`
`<=>{(x=[-3m-6]/[3(-m^2+m-6)]),(y=[4-m]/[-m^2+m-6]):}`
Ta có: `x-y=[-3m-6]/[3(-m^2+m-6)]-[4-m]/[-m^2+m-6]`
`=[-3m-6-12+3m]/[-3(m^2-m+6)]`
`=[-18]/[-3(m^2-m+6)]=6/[(m-1/2)^2+23/4]`
Vì `(m-1/2)^2+23/4 >= 23/4`
`<=>6/[(m-1/2)^2+23/4] <= 24/23`
Hay `x-y <= 24/23`
Dấu "`=`" xảy ra `<=>m-1/2=0<=>m=1/2`
a/ x+ 2y = m => x = m -2y. Thế vào phương trình 2x +my = 8 ta được
2(m-2y) +my = 8 => -4y +my = 8-2m => (m-4)y = 8-2m
Nếu m = 4 => 0.y = 0 luôn đúng => hệ có vô số nghiệm
Nếu m khác 4 => y = (8-2m)/ (m-4 ) => x = m - 2(8-2m)/ (m-4) = (m2 -16)/ (m-4). Khi đó, hệ có nghiệm duy nhất
Vậy hệ đã cho có nghiệm với mọi m, và khi m khác 4 thì hệ có nghiệm duy nhất
Wryyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
a. Bạn tự giải
b. Thế cặp nghiệm x=-1, y=3 vào hệ ban đầu ta được:
\(\left\{{}\begin{matrix}-1+3m=9\\-m-9=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3m=10\\-m=13\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn
c. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=9m\\mx-3y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+3\right)y=9m-4\\mx-3y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{9m-4}{m^2+3}\\x=\dfrac{4m+27}{m^2+3}\end{matrix}\right.\)
Vậy với mọi m thì hệ luôn có nghiệm duy nhất như trên
Rút y từ phương trình số 2 rồi thay vào phương trrình 1 => 3x + m^2x - m = 5 => m^2x+3x=m+5 => x(m^2+3)=m+5