K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2016
  • Phương trình: \(x^2-5x+3m+1=0.\)ở dạng tổng quát \(ax^2+bx+c=0\)có hệ số \(a=1;b=-5;c=3m+1\)
  • \(x_1;x_2\)là nghiệm của phương trình thì: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=5\left(a\right)\\x_1\cdot x_2=\frac{c}{a}=3m+1\left(b\right)\end{cases}}\)
  • \(\left|x_1^2-x_2^2\right|=_{ }\left|\left(x_1-x_2\right)\cdot\left(x_1+x_2\right)\right|=5\cdot\left|x_1-x_2\right|=15\Rightarrow\left|x_1-x_2\right|=3\)
  • Nếu \(x_1-x_2=3\)cùng với (a) \(x_1+x_2=5\)\(\Rightarrow x_1=4;x_2=1\)thay vào (b) \(4\cdot1=3m+1\Rightarrow m=1\)
  • Nếu \(x_1-x_2=-3\)cùng với (a) \(x_1+x_2=5\)\(\Rightarrow x_1=1;x_2=4\)thay vào (b) \(4\cdot1=3m+1\Rightarrow m=1\)
  • Vậy, với m=1 thì PT trên có 2 nghiệm phân biệt thỏa mãn điều kiện đề bài.
 

PT có 2 nghiệm phân biệt

\(\Leftrightarrow\text{Δ}>0\Leftrightarrow\left(2m\right)^2-4.\left(m+1\right)\left(m-1\right)>0\) 

\(\Leftrightarrow4m^2-4\left(m^2-1\right)>0\Leftrightarrow4>0\)(luôn đúng)

Vậy PT luôn có 2 nghiệm phân biệt

Theo hệ thức Viét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{2m}{m+1}\\x_1.x_2=\dfrac{m-1}{m+1}\end{matrix}\right.\)

Mà theo GT thì ta có:

\(x_1^2+x_2^2=5\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=5\)

\(\Leftrightarrow\left(\dfrac{-2m}{m+1}\right)^2-2.\dfrac{m-1}{m+1}=5\)

\(\Leftrightarrow\dfrac{4m^2}{\left(m+1\right)^2}-\dfrac{2\left(m-1\right)}{m+1}=5\)

\(\Leftrightarrow\dfrac{1}{m+1}\left[\dfrac{4m^2}{m+1}-2\left(m-1\right)\right]=5\)

\(\Leftrightarrow\dfrac{2m^2+2}{m^2+2m+1}=5\)

\(\Leftrightarrow2m^2+2=5m^2+10m+5\)

\(\Leftrightarrow3m^2+10m+3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-\dfrac{1}{3}\\m=-3\end{matrix}\right.\)

 

 

NV
12 tháng 9 2021

\(\Leftrightarrow x^3-3x^2+2-\left(3x^2-2x-1\right)m=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-2x-2\right)-\left(x-1\right)\left(3mx+m\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-\left(3m+2\right)x-m-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2-\left(3m+2\right)x-m-2=0\left(1\right)\end{matrix}\right.\)

(1) luôn có 2 nghiệm pb. Để pt có 3 nghiệm pb \(\Rightarrow1-\left(3m+2\right)-m-2\ne0\Rightarrow m\ne-\dfrac{3}{4}\)

TH1: \(x_3=1\) và \(x_1;x_2\) là nghiệm của (1)

\(\Rightarrow3m+2=2\Rightarrow m=0\) (thỏa mãn)

TH2: \(x_1=1\) và \(x_2;x_3\) là nghiệm của (1)

Kết hợp hệ thức Viet ta được: \(\left\{{}\begin{matrix}x_2=2x_3-1\\x_2+x_3=3m+2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=2x_3-1\\x_3=m+1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_2=2m+1\\x_3=m+1\end{matrix}\right.\)

Thế vào \(x_2x_3=-m-2\)

\(\Rightarrow\left(2m+1\right)\left(m+1\right)=-m-2\)

\(\Rightarrow2m^2+4m+3=0\) (vô nghiệm)

Vậy \(m=0\)

12 tháng 9 2021

e cam on , vay em lam dung roi :^^

18 tháng 2 2023

Ptr có nghiệm `<=>\Delta' >= 0`

                       `<=>[-(m+1)^2]-6m+4 >= 0`

                      `<=>m^2+2m+1-6m+4 >= 0`

                      `<=>m^2-4m+5 >= 0<=>(m-2)^2+1 >= 0` (LĐ `AA m`)

`=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=2m+2),(x_1.x_2=c/a=6m-4):}`

Có:`(2m-2)x_1+x_2 ^2-4x_2=4`

`<=>(x_1+x_2-4)x_1+x_2 ^2-4x_2=4`

`<=>x_1 ^2+x_1 x_2 -4x_1+x_2 ^2-4x_2=4`

`<=>(x_1+x_2)^2-x_1x_2-4(x_1+x_2)=4`

`<=>(2m+2)^2-(6m-4)-4(2m+2)=4`

`<=>4m^2+8m+4-6m+4-8m-8=4`

`<=>4m^2-6m-4=0`

`<=>(2m-3/2)^2-25/4=0`

`<=>|2m-3/2|=5/2`

`<=>[(m=2),(m=-1/2):}`

\(x^2-6x+2m-3=0\)

\(\Delta=b^2-4ac=36-4\left(2m-3\right)=36-8m+12=48-8m\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)\(< =>48-8m>0< =>48>8m< =>6>m\)

Theo Vi-ét ta có :\(\hept{\begin{cases}x_1x_2=\frac{c}{a}=2m-3\\x_1+x_2=\frac{-b}{a}=6\end{cases}}\)là 

\(x_1\)là nghiệm phương trình \(x_1^2-6x_1+2m-3=0\)

\(=>x_1^2=3-2m+6x_1\)

\(x_2\)là nghiệm phương trình \(x_2^2-6x_2+2m-3=0\)

\(=>x_2^2=3-2m+6x_2\)

Mà \(\left(x_1^2-5x_1+2m-4\right)\left(x_2^2-5x_2+2m-4\right)=2\)

\(\left(3-2m+6x_1-5x_1+2m-4\right)\left(3-2m+6x_2-5x_2+2m-4\right)=2\)

\(\left(3+x_1-4\right)\left(3+x_2-4\right)=2\)

\(\left(x_1-1\right)\left(x_2-1\right)=2\)

\(x_1x_2-x_1-x_2+1=2\)

\(x_1x_2-\left(x_1+x_2\right)=1\)

\(2m-3-6=1\)

\(2m-9=1\)

\(m=5\)

Vậy m=5

4 tháng 8 2020

\(x^2_2-2\left(m+1\right)x_2+6m-4=0\) la sao

AH
Akai Haruma
Giáo viên
4 tháng 8 2020

Nguyễn Thái Sơn: vì $x_2$ là nghiệm của PT $x^2-2(m+1)x+6m-4=0$ (phương trình ban đầu) đó bạn.

NV
11 tháng 9 2021

Pt trùng phương chỉ có các trường hợp

- Vô nghiệm

- Có 2 nghiệm phân biệt

- Có 4 nghiệm phân biệt

- Có 2 nghiệm kép

- Có 3 nghiệm (trong đó 2 nghiệm pb và 1 nghiệm kép \(x=0\))

Không tồn tại trường hợp có 3 nghiệm pb

11 tháng 9 2021

\(x^4-2mx^2+\left(2m-1\right)=0\left(1\right)\)

Đặt \(t=x^2\), pt trở thành:

\(t^2-2mt+\left(2m-1\right)=0\left(2\right)\)

Để pt(1) có 3 nghiệm thì pt(2) có 1 nghiệm dương khác 0 và 1 nghiệm bằng 0

\(\Leftrightarrow2m-1=0\Leftrightarrow m=\dfrac{1}{2}\\ \Leftrightarrow t^2-t=0\\ \Leftrightarrow\left[{}\begin{matrix}t=0\\t=1\end{matrix}\right.\left(nhận\right)\)

Vậy \(m=\dfrac{1}{2}\)

 

22 tháng 1 2017

Để pt có 2 nghiệm phân biệt thì:

\(\Delta=\left(3m-1\right)^2-4\left(2m^2-m\right)>0\)

\(\Leftrightarrow m^2-2m+1>0\)

\(\Leftrightarrow m\ne1\)

Theo vi-et ta có: \(\hept{\begin{cases}x_1+x_2=3m-1\\x_1x_2=2m^2-m\end{cases}}\)

Ta có: \(\left|x_1-x_2\right|-2=0\)

\(\Leftrightarrow\left|x_1-x_2\right|=2\)

\(\Leftrightarrow x^2_1-2x_1x_2+x^2_2=4\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4\)

\(\Leftrightarrow\left(3m-1\right)^2-4\left(2m^2-m\right)=4\)

 \(\Leftrightarrow m^2-2m-3=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=3\\m=-1\end{cases}}\) 

22 tháng 1 2017

Bài này không dùng vi_et đúng là dài thật: (hiểu "Tam giác" rồi chính thức gia nhập giải lớp 9 không giao luu nữa")