a) tìm các số nguyên x ;y;z sao cho x+y+z+5=2\(\sqrt{x-1}\) +4\(\sqrt{y-3}\)+6\(\sqrt{z-5}\)
b)tìm tất cả các số tự nhiên n có ba chữ số dạng abc sao cho n2 có 3 chữ số tận cùng là abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để t = \(\frac{3x-8}{x-5}\)nguyên
=> 3x - 8 chia hết cho x - 5
=> 3x - 15 + 7 chia hết cho x - 5
=> 3(x - 5) + 7 chia hết cho x - 5
Có 3(x - 5) chia hết cho x - 5
=> 7 chia hết cho x - 5
=> x - 5 thuộc Ư(7)
=> x - 5 thuộc {1; -1; 7; -7}
=> x thuộc {6; 4; 12; -2}
Để T nguyên thì 3x - 8 chia hết cho x - 5
<=> 3x - 15 + 7 chia hết cho x - 5
=> 3(x - 5) + 7 chia hết cho x - 5
=> 7 chia hết cho x - 5
=> x - 5 thuộc Ư(7)={-1;1;-7;7}
Ta có:
x - 5 | -1 | 1 | -7 | 7 |
x | 4 | 6 | -2 | 12 |
\(a)\) Ta có :
\(A=\frac{6x+9}{3x+2}=\frac{6x+4+5}{3x+2}=\frac{6x+4}{3x+2}+\frac{5}{3x+2}=\frac{2\left(3x+2\right)}{3x+2}+\frac{5}{3x+2}=2+\frac{5}{3x+2}\)
Để A có giá trị nguyên thì \(\frac{5}{3x+2}\) phải nguyên hay \(5\) chia hết cho \(3x+2\)\(\Rightarrow\)\(\left(3x+2\right)\inƯ\left(5\right)\)
Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)
Suy ra :
\(3x+2\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(x\) | \(\frac{-1}{3}\) | \(-1\) | \(1\) | \(\frac{-7}{3}\) |
Mà \(x\) là số nguyên nên \(x\in\left\{-1;1\right\}\)
Vậy \(x\in\left\{-1;1\right\}\)
Chúc bạn học tốt ~
\(b)\) Ta có bất đẳng thức giá trị tuyệt đối như sau :
\(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)
Dấu "=" xảy ra khi và chỉ khi \(xy\ge0\)
Áp dụng vào ta có :
\(A=\left|x\right|+\left|8-x\right|\ge\left|x+8-x\right|=\left|8\right|=8\)
Dấu "=" xảy ra khi và chỉ khi \(x\left(8-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x\ge0\\8-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\le8\end{cases}\Leftrightarrow}0\le x\le8}\)
Trường hợp 2 :
\(\hept{\begin{cases}x\le0\\8-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le0\\x\ge8\end{cases}}}\) ( loại )
Vậy GTNN của \(A=8\) khi \(0\le x\le8\)
Chúc bạn học tốt ~
=> -3 chia hết cho x-1
=>x-1 thuộc Ư(-3)=(1;-1;3;-3)
=>x thuộc {2;0;4;-2}
6 là bội của n+1
=> 6 chia hết cho n+1
=> n+1 thuộc Ư(6)={-1,-2,-3,-6,1,2,3,6}
Ta có bảng :
n+1 | -1 | -2 | -3 | -6 | 1 | 2 | 3 | 6 |
n | -2 | -3 | -4 | -7 | 0 | 1 | 2 | 5 |
Vậy n={-7,-4,-3,-2,0,1,2,5}
Vì 12 chia hết cho x và 15 chia hết cho x
=> x thuộc ƯC(12,15)
Ta có: 12 = 22 . 3
15 = 3. 5
=> ƯCLN(12,15) = 3
=> ƯC(12,15) = {-3:-1:1:3}
12⋮x và 15⋮x => x ϵ ƯC(12,15)
12 = 22.3
15 = 3.5
=> ƯCLN(12,15) = 3
=> ƯC(12,15) = Ư(3) = {-3;-1;1;3}
a) \(x+y+z+5=2\sqrt{x-1}+4\sqrt{y-3}+6\sqrt{z-5}\left(DK:x\ge1;y\ge3;z\ge5\right)\)
\(\Leftrightarrow\left[\left(x-1\right)-2\sqrt{x-1}+1\right]+\left[\left(y-3\right)-4\sqrt{y-3}+4\right]+\left[\left(z-5\right)-6\sqrt{z-5}+9\right]=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{x-1}-1\right)^2=0\\\left(\sqrt{y-3}-2\right)^2=0\\\left(\sqrt{z-5}-3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=7\\z=14\end{cases}}}\)(TMDK)