Câu 2: Cho tam giác ABC cân tại A. Kẻ BE, CF lần lượt vuông góc với AC và AB E AC (FAB)
a) Chứng minh ABE ACF.
b) Gọi I là giao điểm của BE và CF. Chứng minh BIC cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Xét ΔEBC vuông tại E và ΔFCB vuông tại F có
BC chung
\(\widehat{ECB}=\widehat{FBC}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔEBC=ΔFCB(cạnh huyền-góc nhọn)
Suy ra: \(\widehat{EBC}=\widehat{FCB}\)(hai góc tương ứng)
hay \(\widehat{IBC}=\widehat{ICB}\)
Xét ΔBIC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)
nên ΔIBC cân tại I(Định lí đảo của tam giác cân)
a) Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC(ΔABC cân tại A)
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF(Cạnh huyền-góc nhọn)
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF
b: Ta có: ΔABE=ΔACF
nên BE=CF
Xét ΔFBC vuông tại F và ΔECB vuông tại E có
BC chung
CF=BE
Do đó: ΔFBC=ΔECB
Suy ra: \(\widehat{ICB}=\widehat{IBC}\)
hay ΔIBC cân tại I
c: Ta có: AB=AC
nên A nằm trên đườg trung trực của BC(1)
ta có: IB=IC
nên I nằm trên đường trung trực của BC(2)
Ta có: MB=MC
nên M nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,I,M thẳng hàng
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF
b: Xét ΔFBC vuông tại F và ΔECB vuông tại E có
FB=EC
FC=EB
BC chung
DO đó: ΔFBC=ΔECB
Suy ra: \(\widehat{ICB}=\widehat{IBC}\)
hay ΔBIC cân tại I
d: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: IB=IC
nên I nằm trên đường trung trực của BC(2)
Ta có: MB=MC
nên M nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,M,I thẳng hàng
a) Tam giác ABE ( góc E=90 độ) và Tam giác ACF ( góc F=90 độ), có:
AB = AC ( gt )
Góc A chung
=> tam giác ... = tam giac ... ( cạnh huyền - góc nhọn)
=> BE = CF và góc ABE = góc ACF
b) Tam giác FCB ( góc F = 90 độ) và tam giác BEC ( góc E=90 độ), có:
BC chung
FC = EB ( c/m trên)
=> tam giác... = tam giác... ( cạnh huyền-cạnh góc vuông)
=> FB=EC
Tam giác ECI và tam giác FBI, có:
EC=FB (c/m trên)
góc E= góc F (=90 độ)
góc ACF = góc ABE (c/m trên)
=> tam giác ...= tam giác... (g-c-g)
c) Ta có: FA=AB - FB
EA=AC - EC
mà AB=AC; FB=EC
=> FA=EA
tam giác AIF(F=90 độ) tam giác AIE (E = 90 độ), có:
AI chung
FA=EA (c/ m trên)
=> tam giác... = tam giác... ( cạnh huyền-cạnh góc vuông)
=> góc BAI = góc CAI
hay AI là phân giác của góc A
a) Tam giác ABE ( góc E=90 độ) và Tam giác ACF ( góc F=90 độ), có:
AB = AC ( gt )
Góc A chung
=> tam giác ... = tam giac ... ( cạnh huyền - góc nhọn)
=> BE = CF và góc ABE = góc ACF
b) Tam giác FCB ( góc F = 90 độ) và tam giác BEC ( góc E=90 độ), có:
BC chung
FC = EB ( c/m trên)
=> tam giác... = tam giác... ( cạnh huyền-cạnh góc vuông)
=> FB=EC
Tam giác ECI và tam giác FBI, có:
EC=FB (c/m trên)
góc E= góc F (=90 độ)
góc ACF = góc ABE (c/m trên)
=> tam giác ...= tam giác... (g-c-g)
c) Ta có: FA=AB - FB
EA=AC - EC
mà AB=AC; FB=EC
=> FA=EA
tam giác AIF(F=90 độ) tam giác AIE (E = 90 độ), có:
AI chung
FA=EA (c/ m trên)
=> tam giác... = tam giác... ( cạnh huyền-cạnh góc vuông)
=> góc BAI = góc CAI
hay AI là phân giác của góc A
chơi surviv.io nhanh lênnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC
\(\widehat{A}\) chung
Do đó: ΔABE=ΔACF
b: Xét ΔFBC vuông tại F và ΔECB vuông tại E có
BC chung
FC=EB
Do đó: ΔFBC=ΔECB
Suy ra: \(\widehat{FCB}=\widehat{EBC}\)
=>ΔIBC cân tại I