So sánh A và 5/8 biết : A= 1/101 + 1/102 + 1/103 +... + 1/200. Mik sẽ tick cho ai trả lời đúng nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{1}{101}>\frac{1}{200}\)
\(\frac{1}{102}>\frac{1}{200}\)
\(\frac{1}{103}>\frac{1}{200}\)
\(.........\)
\(\frac{1}{200}=\frac{1}{200}\)
Cộng vế với vế ta được :
\(\frac{1}{101}+\frac{1}{102}+.....+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+....+\frac{1}{200}\) (có 100 số hạng \(\frac{1}{200}\))\(=\frac{100}{200}=\frac{1}{2}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.....+\frac{1}{200}>\frac{1}{2}\)
Đặt \(A=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)
Ta có:
\(\dfrac{1}{101}>\dfrac{1}{200}\)
\(\dfrac{1}{102}>\dfrac{1}{200}\)
\(\dfrac{1}{103}>\dfrac{1}{200}\)
...
\(\dfrac{1}{199}>\dfrac{1}{200}\)
\(\Rightarrow A=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\)
\(=\dfrac{1}{200}.100\)
\(=\dfrac{1}{2}\)
Mà \(\dfrac{1}{2}< 1\)
\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}< 1\).
\(A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{199}+\frac{1}{200}\)
Ta thấy các phân số \(\frac{1}{101};\frac{1}{102};\frac{1}{103};...;\frac{1}{198};\frac{1}{199}\)đều lớn hơn \(\frac{1}{200}\)
\(\Rightarrow A>\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+..+\frac{1}{200}+\frac{1}{200}\)(có 100 số hạng \(\frac{1}{200}\))
\(\Leftrightarrow A>\frac{100}{200}\)
\(\Leftrightarrow A>\frac{1}{2}\)
a) Ta có: \(\frac{2010}{2009}=1+\frac{1}{2009}\)(1)
\(\frac{2011}{2010}=1+\frac{1}{2010}\)(2)
Từ (1) và (2)
Mà: \(\frac{1}{2009}>\frac{1}{2010}\)
\(\Rightarrow\frac{2010}{2009}>\frac{2011}{2010}\)
b) Ta có: 100 số hạng của dãy đều bé hơn 1/100
\(\Rightarrow\)\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}< \frac{1}{100}\cdot100\)
Hay \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}< 1\)