Rút gọn biểu thức B= căn (x^2-4x+4) - căn (x^2+4x+4)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
Bài 1:
a) \(B=\sqrt{1-4x+4x^2}\)
\(=\sqrt{\left(1-2x\right)^2}\)
\(=\left|1-2x\right|\)
Nếu \(x\le\frac{1}{2}\)thì: \(B=1-2x\)
Nếu \(x>\frac{1}{2}\)thì: \(B=2x-1\)
b) Tại \(x=-7\)thì: \(B=1-2.\left(-7\right)=15\)
a) Ta có: \(M=\left(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)
\(=\left(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)
\(=\dfrac{x-9-\left(x-2\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)
\(=\dfrac{x-9-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{-\left(\sqrt{x}-7\right)}\)
\(=\dfrac{\sqrt{x}-7}{\sqrt{x}-2}\cdot\dfrac{-1}{\sqrt{x}-7}\)
\(=\dfrac{-1}{\sqrt{x}-2}\)(1)
b) Ta có: \(x^2-4x=0\)
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)
Thay x=0 vào biểu thức (1), ta được:
\(M=\dfrac{-1}{\sqrt{0}-2}=\dfrac{-1}{-2}=\dfrac{1}{2}\)
Vậy: Khi \(x^2-4x=0\) thì \(M=\dfrac{1}{2}\)
Ta có: \(A=\dfrac{x-4\sqrt{x}+4}{\sqrt{x}-2}+\dfrac{x+\sqrt{x}-2}{\sqrt{x}-2}\)
\(=\dfrac{2x-3\sqrt{x}+2}{\sqrt{x}-2}\)
ĐKXĐ: \(x\ne2\)
Ta có:
\(\left|x-2\right|+\frac{\sqrt{x^2-4x+4}}{x-2}=\left|x-2\right|+\frac{\sqrt{\left(x-2\right)^2}}{x-2}=\left|x-2\right|+\frac{\left|x-2\right|}{x-2}\left(1\right)\)
Chia 2 trường hợp:
+) T/h 1: \(x>2\) thì:
\(\left(1\right)\Leftrightarrow x-2+\frac{x-2}{x-2}=x-2+1=x-1\)
+) T/h 2: \(x< 2\) thì:
\(\left(1\right)\Leftrightarrow2-x+\frac{2-x}{x+2}=2-x-\frac{x-2}{x-2}=2-x-1=1-x\)
Câu 1:
\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)
\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=3\)(1)
Trường hợp 1: x<1
(1) trở thành 1-x+2-x=3
=>3-2x=3
=>x=0(nhận)
Trường hợp 2: 1<=x<2
(1) trở thành x-1+2-x=3
=>1=3(loại)
Trường hợp 3: x>=2
(1) trở thành x-1+x-2=3
=>2x-3=3
=>2x=6
hay x=3(nhận)
\(\sqrt{x^2-4x+4}-\sqrt{x^2+4x+4}=\sqrt{\left(x-2\right)^2}-\sqrt{\left(x+2\right)^2}=\left|x-2\right|-\left|x+2\right|\)
1. Với \(x\ge2\)thì :
\(B=\left(x-2\right)-\left(x+2\right)=x-2-x-2=-4\)
2. Với \(x\le-2\)thì :
\(B=\left(2-x\right)-\left(-x-2\right)=2-x+x+2=4\)
3. Với \(-2< x< 2\)thì
\(\left(2-x\right)-\left(x+2\right)=2-x-x-2=-2x\)