Chứng minh: \(a^2>0\Leftrightarrow a\ne0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}$
$\Leftrightarrow a+b=a+c+b+c+2\sqrt{(a+c)(b+c)}$
$\Leftrightarrow 2c+2\sqrt{(a+c)(b+c)}=0$
$\Leftrightarrow c+\sqrt{(a+c)(b+c)}=0$
\(\Leftrightarrow \left\{\begin{matrix} -c=\sqrt{(a+c)(b+c)}\\ c< 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} c^2=(c+a)(c+b)\\ c< 0\end{matrix}\right.\)
\( \Leftrightarrow \left\{\begin{matrix} ab+bc+ac=0\\ c< 0\end{matrix}\right.\Leftrightarrow \frac{ba+bc+ac}{abc}=0\) (do $a,b>0$)
$\Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0$
(đpcm)
a: |x|<a
=>x^2<a^2
=>-a<x<a
b: |x|>a
=>x^2>a^2
=>x>a hoặc x<-a
\(a,\dfrac{a}{b}>1\Leftrightarrow a>1\cdot b=b\\ \dfrac{a}{b}< 1\Leftrightarrow a< 1\cdot b=b\\ b,\dfrac{a}{b}=\dfrac{a\left(b+1\right)}{b\left(b+1\right)}=\dfrac{ab+a}{b^2+b}\\ \dfrac{a+1}{b+1}=\dfrac{b\left(a+1\right)}{b\left(b+1\right)}=\dfrac{ab+b}{b^2+b}\\ \forall a=b\Leftrightarrow\dfrac{a}{b}=\dfrac{a+1}{b+1}\\ \forall a>b\Leftrightarrow\dfrac{a}{b}>\dfrac{a+1}{b+1}\\ \forall a< b\Leftrightarrow\dfrac{a}{b}< \dfrac{a+1}{b+1}\)
\(c,\forall a>b\Leftrightarrow\dfrac{a}{b}-1=\dfrac{a-b}{b}>\dfrac{a-b}{b+n}\left(b< b+n;a-b>0\right)=\dfrac{a+n}{b+n}-1\\ \Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\\ \forall a< b\Leftrightarrow1-\dfrac{a}{b}=\dfrac{b-a}{b}>\dfrac{b-a}{b+n}\left(b< b+n;b-a>0\right)=1-\dfrac{a+n}{b+n}\\ \Leftrightarrow1-\dfrac{a}{b}>1-\dfrac{a+n}{b+n}\Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\\ \forall a=b\Leftrightarrow\dfrac{a+n}{b+n}=\dfrac{a}{b}\left(=1\right)\)
chứng minh :\(\sqrt{A}+\sqrt{B}=0\Leftrightarrow\left\{{}\begin{matrix}A=0\\B=0\end{matrix}\right.\)
\(\sqrt{A}\ge0\) ; \(\sqrt{B}\ge0\) Mà \(\sqrt{A}+\sqrt{B}=0\) => \(A=0;B=0\)
Ta có \(\sqrt{A}\ge0,\sqrt{B}\ge0\Rightarrow\sqrt{A}+\sqrt{B}\ge0\)
Vậy muốn xảy ra dấu '=' thì \(\sqrt{A}=\sqrt{B}=0\Leftrightarrow A=B=0\)(đpcm)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Leftrightarrow ab+bc+ca=0\)
Cần cm:
\(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\\ \Leftrightarrow a+b=a+b+2c+2\sqrt{\left(a+c\right)\left(b+c\right)}\\ \Leftrightarrow2c+2\sqrt{ab+ac+bc+c^2}=0\\ \Leftrightarrow2c+2\sqrt{c^2}=0\\ \Leftrightarrow2c+2\left|c\right|=0\\ \Leftrightarrow2c-2c=0\left(c< 0\right)\\ \Leftrightarrow0=0\left(luôn.đúng\right)\)
Vậy đẳng thức đc cm
\(-b\le a\le b\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b\ge0\\a-b\le0\end{matrix}\right.\)
\(a^2-b^2=\left(a-b\right)\cdot\left(a+b\right)\le0\)
\(\Leftrightarrow a^2\le b^2\)
BĐT chỉ đúng khi \(b\ge0\) (Dễ thấy nếu b < 0 thì -b > 0 > b, bđt sai)
\(a^2\le b^2\Leftrightarrow\left(a-b\right)\left(a+b\right)\le0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a-b\ge0\\a+b\le0\end{matrix}\right.\\\left\{{}\begin{matrix}a-b\le0\\a+b\ge0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}b\le a\le-b\left(vl\right)\\-b\le a\le b\left(tm\right)\end{matrix}\right.\)\(\Rightarrow-b\le a\le b\)
Vậy...
\(a^2 > 0 ⇔ \sqrt{a^2} > 0 \)
\(⇔ |a| > 0\)
\(⇔ \left[\begin{array}{} a > 0 \\ - a > 0 \end{array} \right . \)
\(⇔ \left[\begin{array}{} a > 0 \\ a < 0 \end{array} \right . \)
\(⇔ a ≠ 0\) (Điều phải chứng minh)
\(a^2>0\Leftrightarrow a^2\ne0\)(vì a2 > 0 với mọi a)
\(\Leftrightarrow a\ne0\)(Điều phải chứng minh)