K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2022

AD//BC; BD//AC nên ADBC là hình bình hành.

AF//BC; AB//FC nên AFCB là hình bình hành.

AC//BE; AB//CE nên ACEB là hình bình hành.

-Gọi G là giao của CD và BF.

-Ta có: ADBC là hình bình hành (cmt)

\(\Rightarrow\)CD đi qua trung điểm AB.

-Ta có: AFCB là hình bình hành (cmt)

\(\Rightarrow\)BF đi qua trung điểm AC.

-Xét △ABC có:

CD là trung tuyến (CD đi qua trung điểm AB)

BF là trung tuyến (BF đi qua trung điểm AC)

G là giao của CD và BF (gt)

\(\Rightarrow\) G là trọng tâm của △ABC.

\(\Rightarrow\)AG đi qua trung điểm BC (1)

-Ta có: ACEB là hình bình hành (cmt)

\(\Rightarrow\) AE đi qua trung điểm BC (2)

-Từ (1) và (2) suy ra: A,G,E thẳng hàng hay ba đường thẳng AE,BF,CD đồng quy tại G.

 

15 tháng 11 2023

a, Xét tứ giác MNPB có:

MN//PB (Vì MN//BC và P ϵ BC)

MB//NP (Vì AB//NP và M ϵ AB)

=> Tứ giác MNPB là hbh

b, Ta có:

M là trung điểm AB 

MN//BC

=> MN là đường trung bình của tam giác ABC

=> N là trung điểm AC, MN=BC/2 và MN//BC

Xét 2 tam giác AMN và NPC có

AM=NP (Vì AM=BM, BM=NP)

AN=NC

MN=PC ( Vì MN=BC/2, MN=BP)

=> Tam giác AMN = Tam giác NPC (c.c.c)

 

 

 

4 tháng 8 2020

A B C D M N O câu a CHỨNG Minh AB = DC CHỨ sao AB = BC ĐC

A) XÉT \(\Delta ABC\)VÀ \(\Delta CDA\)

\(\widehat{ACB}=\widehat{CAD}\)( VÌ AD // BC , HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG )

AC LÀ CẠNH CHUNG

\(\widehat{BAC}=\widehat{DCA}\)( VÌ AB // DC , HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG )

=> \(\Delta ABC=\Delta CDA\left(g-c-g\right)\)

=> AD = BC (HAI CẠNH TƯƠNG ỨNG )

=> AB = DC ( HAI CẠNH TƯƠNG ỨNG )

TA CÓ M LÀ TRUNG ĐIỂM CỦA BC 

\(\Rightarrow BM=CM=\frac{BC}{2}\left(1\right)\)

TA CÓ N LÀ TRUNG ĐIỂM CỦA AD 

\(\Rightarrow AN=DN=\frac{AD}{2}\left(2\right)\)

TỪ (1) VÀ (2)

\(BM=CM=\frac{BC}{2}\)

\(AN=DN=\frac{AD}{2}\)

MÀ AD = BC ( CMT)

=>  \(BM=CM=AN=DN\)

XÉT \(\Delta BAM\)VÀ \(\Delta DCN\)CÓ 

\(BA=DC\)(VÌ \(\Delta ABC=\Delta CDA\))

\(\widehat{ABM}=\widehat{CDN}\)(VÌ  \(\Delta ABC=\Delta CDA\))

\(BM=DN\left(cmt\right)\)

=>\(\Delta BAM=\Delta DCN\left(c-g-c\right)\)

=> AM = CN (HAI CẠNH TƯƠNG ỨNG )

c) XÉT TỨ GIÁC ABCD

ta có \(AD=BC\left(cmt\right);AB=CD\left(cmt\right)\)

=> TỨ GIÁC ABCD LÀ HÌNH THOI

=> CÁC ĐƯỜNG CHÉO CẮT NHAU TẠI TRUNG ĐIỂM CỦA NÓ

=> \(OA=OC;OB=OD\)

5 tháng 8 2020

mượn hình của Lê Trí Tiên  làm tiếp câu (d)

vì M là trung điểm AD và O là trung điểm của AC => ON là đường trung bình tam giác ACD

=> ON //DC (1)

chứng minh tương tự ta có: OM là đường trung bình tam giác ACB

=> OM // AB mà AB // CD => OM // DC (2)

từ (1) (2) => M,O,N thằng hàng (đpcm)

5 tháng 8 2020

Bạn tự vẽ hình nhé

a, Xét \(\Delta ABC\)và \(\Delta CDA\), ta có

        \(\widehat{DAC}=\widehat{ACB}\left(gt\right)\)

          AC: cạnh chung

      \(\widehat{BAC}=\widehat{DCA}\left(gt\right)\)

do đó: \(\Delta ABC=\Delta CDA\left(g.c.g\right)\)

      =>AD=BC(2 cạnh tương ứng)

      =>AB=DC(2 cạnh tương ứng)

b, Ta có: BC=AD(CMT)

          =>\(\frac{1}{2}BC=\frac{1}{2}AD\)=>MC=AN

Xét \(\Delta MAC\)và \(\Delta NCA\), ta có:

                  MC=AN(CMT)

   \(\widehat{NAC}=\widehat{MCA}\) (2 góc so le trong)

                 AC:cạnh chung

do đó: \(\Delta MAC=\Delta NCA\left(c.g.c\right)\)

       =>AM=CN(2 cạnh tương ứng)

c, Xét \(\Delta OAD\)và \(\Delta OCB\), ta có:

        \(\widehat{DAO}=\widehat{BCO}\)(2 góc so le trong)

                BC=AD(CMT)

       \(\widehat{OBC}=\widehat{ADO}\)(2 góc so le trong)

do đó \(\Delta AOD=\Delta COB\left(g.c.g\right)\)

      => OA=OC(2 cạnh tương ứng)

      =>OB=OD(2 cạnh tương ứng)

d,Sử dụng tiên đề Ơ-Clit...Bạn suy nghĩ đi mk chưa có cách giải chi tiết

Chúc bạn học tốt

1 tháng 11 2021

 phần d bn k lm ak

30 tháng 11 2014

D là TĐ của AB mà DE //BC nên DE là đg TB của tam giác ABC -->E là TĐ của AC.

E là TĐ của AC mà EF //AB nên EF là đg TB của tam giác CAB--->F là TĐ của BC

22 tháng 12 2017

TB là j

Bài 6: Cho hình thang ABCD có hai đáy là AB và CD. Một đường thẳng song song với AB cắt các cạnh bên AD, BC theo thứ tự ở E và F. a) Chứng minh ED/AD + BF/BC = 1b) Các đường chéo của hình thang cắt nhau tại O. Chứng minh OA.OD = OB.OC.Bài 7: Cho tam giác ABC nhọn, M là trung điểm của BC, E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với AC cắt AB ở D, cắt AM ở K. Qua E kẻ đường thẳng song song...
Đọc tiếp

Bài 6: Cho hình thang ABCD có hai đáy là AB và CD. Một đường thẳng song song với AB cắt các cạnh bên AD, BC theo thứ tự ở E và F. 

a) Chứng minh ED/AD + BF/BC = 1

b) Các đường chéo của hình thang cắt nhau tại O. Chứng minh OA.OD = OB.OC.

Bài 7: Cho tam giác ABC nhọn, M là trung điểm của BC, E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với AC cắt AB ở D, cắt AM ở K. Qua E kẻ đường thẳng song song với AB cắt AC ở F.

a) Chứng minh CF = DK

b) Gọi H là trực tâm của tam giác ABC. Đường thẳng qua H vuông góc với MH cắt AB và AC theo thứ tự ở I và K’. Qua C kẻ đường thẳng song song với IK’, cắt AH và AB theo thứ tự ở N và P. Chứng minh NC = NP và HI = HK’.

Bài 8: Cho tam giác ABC, điểm M bất kì trên cạnh AB. Qua M kẻ đường thẳng song song với BC cắt AC ở N biết AM = 11 cm, MB = 8 cm, AC = 38 cm. Tính độ dài các đoạn thẳng AN, NC.

Bài 9: Cho góc xAy, trên tia Ax lấy hai điểm D và E, trên tia Ay lấy hai điểm F và G sao cho FD song song với EG. Đường thẳng qua G song song với FE cắt tia Ax tại H. Chứng minh AE 2 = AD.AH.

Bài 10: Cho hình bình hành ABCD. Gọi E là một điểm bất kì trên cạnh AB. Qua E kẻ đường thẳng song song với AC cắt BC ở F và kẻ đường thẳng song song với BD cắt AD ở H. Đường thẳng kẻ quá F song song với BD cắt CD ở G. Chứng minh AH.CD = AD.CG.

6
17 tháng 3 2020

Bài 6 :

Tự vẽ hình nhá :)

a) Gọi O là giao điểm của AC và EF

Xét tam giác ADC có :

EO // DC => AE/AD = AO/AC (1)

Xét tam giác ABC có :

OF // DC

=> CF/CB = CO/CA (2)

Từ (1) và (2) => AE/AD + CF/CB = AO/AC + CO/CA = AO + CO/AC = AC/AC = 1 => đpcm

Bài 7 :

A B C D G K M F E

a) Do EF // AB => CF / CA = EF / AB => CF / EF = AC / AB (1)

Dựng MG // AC và M là trung điểm của cạnh BC => GM là đường trung bình của tam giác ABC => G là trung điểm của cạnh AB =>AG = BG

Do DK // GM => AD / AG = DK / GM => AD / BG = DK / GM 

=> DK / AD = GM / BG = \(\frac{\frac{AC}{2}}{\frac{AB}{2}}=\frac{AC}{AB} \left(2\right)\)

Từ (1) và (2) => CF / EF = DK / AD

Mà tứ giác ADEF là hình bình hành ( vì EF // AD và DE // AF ) nên AD = È

=> CF = DK ( đpcm )

Bài 8 : 

A B C M N 38 11 8

Ta có : AB = AM + MB = 11 + 8 = 19 ( cm )

Áp dụng hệ quả định lí Ta-lét vào tam giác ABC, ta có :

AM / AB = AN / AC => AM + AB / AB = AN + AC / AC => 19 + 11 / 19 = AN + 38 / 38 => 30/19 = 38 + AN / 38

=> 1140 = 19.AN + 722

=> AN = ( 1140 - 722 ) / 19 = 22 ( cm )

=> NC = 38 - 12 = 26 ( cm )

4 tháng 2 2020

chắc sang năm mới làm xong mất