Tìm các số tự nhiên n biết: S(n) + n = 2015, trong đó S(n) là tổng các chữ số của n.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy :
• n<3 chữ số:999+(9+9+9)<2016=> n>3 chữ số
• n>5 chữ số: 9999+(9+9+9+9)>2016
=> n có 4 chữ số
Khi n có 4 chữ số ta có \(2016-36\le n\le2016=>1980\le n\le2016\)
=> n có dạng 19ab và 20cd
• TH1: n=19ab
Ta có: 19ab +1+9+a+b=2016
=> 1900+1+9+11a+2b=2016
=> 1910+11a+2b=2016
=> 11a+2b=106
Vì 2b chẵn, 106 chẵn => 11a là số chẵn
=> a là số chẵn
Mà a < 10 và n >= 1980
=> 11a=88 => a=8 => b=9
Ta có số 1989
•TH2: n=20cd
Ta có 20cd +2+c+d=2016
=> 2002+11c+2d=2016
=> 11c+2d=14
Ta thấy 2d chẵn, 14 chẵn => 11c chẵn => c chẵn
Và 11c<14 => c=0 => d=7
Ta có số 2007
Vậy n=1989; n=2007
Giải:
Nếu nn là số có ít hơn 44 chữ số thì n≤999n≤999 và S(n)≤27S(n)≤27
⇒n+S(n)≤999+27=1026<2014⇒n+S(n)≤999+27=1026<2014 (không thỏa mãn)
Mặt khác n≤n+S(n)=2014n≤n+S(n)=2014 nên nn là số ít hơn 55 chữ số
⇒n⇒n là số có 44 chữ số ⇒S(n)≤9.4=36⇒S(n)≤9.4=36
Do vậy n≥2014−36=1978n≥2014−36=1978
Vì 1978≤n≤20141978≤n≤2014 nên [n=¯¯¯¯¯¯¯¯¯¯¯19abn=¯¯¯¯¯¯¯¯¯¯¯20cd[n=19ab¯n=20cd¯
*Nếu n=¯¯¯¯¯¯¯¯¯¯¯19abn=19ab¯ ta có:
¯¯¯¯¯¯¯¯¯¯¯19ab+(1+9+a+b)=201419ab¯+(1+9+a+b)=2014
⇔1910+11a+2b=2014⇔11a+2b=104⇔1910+11a+2b=2014⇔11a+2b=104
Và 11a=104−2b≥104−2.9=8611a=104−2b≥104−2.9=86
⇒8≤10<a⇒a=8⇒8≤10<a⇒a=8
⇒b=8⇒n=1988⇒b=8⇒n=1988 (thỏa mãn)
*Nếu n=¯¯¯¯¯¯¯¯¯¯¯20cdn=20cd¯ ta có:
¯¯¯¯¯¯¯¯¯¯¯20cd+(2+0+c+d)=201420cd¯+(2+0+c+d)=2014
⇒2002+11c+2d=2014⇒11c+2d=12⇒2002+11c+2d=2014⇒11c+2d=12
Và 11c≤12⇒11c≤12⇒[c=0c=1[c=0c=1
+) Với c=0⇒d=6⇒n=2006c=0⇒d=6⇒n=2006 (thỏa mãn)
+) Với c=1⇒2d=1c=1⇒2d=1 (không thỏa mãn)
Vậy n={1988;2006}
Ta có : n+S(n)+S(S(n))=60 nên n<60 (1)
S(n)<=5+9=14 ; S(S(n))<=9 => n>60-14-9=37 (2)
Từ (1) và (2) ta có : 37<n<60
Lần lượt thử, ta được số cần tìm là 44 ; 50
giải bài ni giúp mk với tìm số tự nhiên n biết n + S(n) =2015 pleaseeeeeeeee !!!!!!!!!!!!!
người mang cho em tỗn thương , em vẫn yêu vẫn ko than vãn 1 lời
Ta giải như sau :
Ta có \(S\left(n\right)+n=2015\)(1)
\(\Rightarrow n< 2015\)(2)
Mặt khác ta lại có : \(S\left(n\right)\le1+9.3=28\)
\(\Rightarrow n\ge2015-28=1987\)(3)
Từ (2) và (3) ta có : \(1987\le n< 2015\)
Do đó ta xét n trong khoảng trên được n = 2011 và n = 1993 là đáp số của bài.