K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2022

chị ơi răng mà bài chị làm nhìn lạ ri chị =)))

NV
20 tháng 3 2022

17.

Gọi số vi khuẩn ban đầu là x

Sau 5 phút số vi khuẩn là: \(x.2^5=64000\Rightarrow x=2000\)

Sau k phút:

\(2000.2^k=2048000\Rightarrow2^k=1024=2^{10}\)

\(\Rightarrow k=10\)

NV
20 tháng 3 2022

18.

\(S_{2019}=\left(\dfrac{1}{2}\right)^1+1+\left(\dfrac{1}{2}\right)^2+1+...+\left(\dfrac{1}{2}\right)^{2019}+1\)

\(=\left(\dfrac{1}{2}\right)^1+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{2019}+2019\)

Xét \(S=\left(\dfrac{1}{2}\right)^1+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{2019}\) là tổng cấp số nhân với \(\left\{{}\begin{matrix}u_1=\dfrac{1}{2}\\q=\dfrac{1}{2}\\n=2019\end{matrix}\right.\)

\(\Rightarrow S=\dfrac{1}{2}.\dfrac{\left(\dfrac{1}{2}\right)^{2019}-1}{\dfrac{1}{2}-1}=1-\dfrac{1}{2^{2019}}\)

\(\Rightarrow S_{2020}=2019+S=2020-\dfrac{1}{2^{2019}}\)

19. C là khẳng định sai, ví dụ: \(u_n=2\) ; \(v_n=-\dfrac{1}{n}\)

13 tháng 8 2021

18.\(\)\(=>I1=\dfrac{U}{R1}=\dfrac{16}{4R2}=\dfrac{4}{R2}A,\)

\(=>I2=\dfrac{U}{R2}=\dfrac{16}{R2}\left(A\right)\)

\(=>I2=I1+6< =>\dfrac{16}{R2}=\dfrac{4}{R2}+6< =>R2=2\left(ôm\right)\)

\(=>I1=\dfrac{4}{2}=2A,=>I2=2+6=8A\)

\(=>R1=4R2=8\left(ôm\right)\)

19

\(I2=1,5I1< =>\dfrac{U}{R2}=\dfrac{1,5U}{R1}=>\dfrac{1}{R2}=\dfrac{1,5}{R1}\)

\(< =>\dfrac{1}{R2}=\dfrac{1,5}{R2+5}=>R2=10\left(ôm\right)=>R1=R2+5=15\left(ôm\right)\)

 

 

31 tháng 7 2016

187:2003=305651 (dư 3)

tích co mình nha

31 tháng 7 2016

Bạn ơi, 1817 mà bạn?

28 tháng 7 2023

Yêu cầu đề bài của bạn

 

28 tháng 7 2023

A = - \(x^2\) - 4\(x\)

A = -(\(x^2\) + 4\(x\) + 4) + 4

A = -(\(x\) + 2)2 + 4 

Vì (\(x\) + 2)2 ≥ 0 ⇒ -(\(x\) + 2)2 ≤ 0 ⇒ - (\(x\) + 2)2 + 4  ≤ 4

⇒ Amax = 4 ⇔ \(x\) + 2 = 0 ⇔ \(x\) = -2

Kết luận giá trị lớn nhất của A là 4 xảy ra khi \(x\) = -2

B = - 9\(x^2\) + 24\(x\) - 18

B = - (9\(x^2\) - 24\(x\) + 16) - 2

B = -(3\(x\) - 4)2 - 2 

(3\(x\) - 4)2 ≥ 0 ⇒ -(3\(x\) - 4)2 ≤ 0 ⇒ -(3\(x\) - 4)2 - 2 ≤ -2 

Bmax = -2 ⇔ 3\(x\)   - 4 = 0 ⇔ \(x\) = \(\dfrac{4}{3}\) 

Kết luận giá trị lớn nhất của B là: -2 xảy ra khi \(x\) = \(\dfrac{4}{3}\) 

28 tháng 7 2023

\(A=-x^2-4x\)

\(\Rightarrow A=-x^2-4x-4+4\)

\(\Rightarrow A=-\left(x^2+4x+4\right)+4\)

\(\Rightarrow A=-\left(x+2\right)^2+4\)

mà \(-\left(x+2\right)^2\le0,\forall x\)

\(\Rightarrow A=-\left(x+2\right)^2+4\le0+4=4\)

Vậy GTLN của A là 4

\(B=-9x^2+24x-18\)

\(\Rightarrow B=-9x^2+24x-16+16-18\)

\(\Rightarrow B=-\left(9x^2-24x+16\right)+16-18\)

\(\Rightarrow B=-\left(3x-4\right)^2-2\)

mà \(-\left(3x-4\right)^2\le0,\forall x\)

\(\Rightarrow B=-\left(3x-4\right)^2-2\le0-2=-2\)

Vậy GTLN của B là -2

28 tháng 7 2023

loading...  

NV
1 tháng 11 2021

\(y'=\dfrac{\left(-2x+2\right)\left(x-3\right)-\left(-x^2+2x+c\right)}{\left(x-3\right)^2}=\dfrac{-x^2+6x-6-c}{\left(x-3\right)^2}\)

\(\Rightarrow\) Cực đại và cực tiểu của hàm là nghiệm của: \(-x^2+6x-6-c=0\) (1)

\(\Delta'=9-\left(6+c\right)>0\Rightarrow c< 3\)

Gọi \(x_1;x_2\) là 2 nghiệm của (1) \(\Rightarrow\left\{{}\begin{matrix}-x_1^2+6x_1-6=c\\-x_2^2+6x_2-6=c\end{matrix}\right.\)

\(\Rightarrow m-M=\dfrac{-x_1^2+2x_1+c}{x_1-3}-\dfrac{-x_2^2+2x_2+c}{x_2-3}=4\)

\(\Leftrightarrow\dfrac{-2x_1^2+8x_1-6}{x_1-3}-\dfrac{-2x_2^2+8x_2-6}{x_2-3}=4\)

\(\Leftrightarrow2\left(1-x_1\right)-2\left(1-x_2\right)=4\)

\(\Leftrightarrow x_2-x_1=2\)

Kết hợp với Viet: \(\left\{{}\begin{matrix}x_2-x_1=2\\x_1+x_2=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=2\\x_2=4\end{matrix}\right.\)

\(\Rightarrow c=2\)

Có 1 giá trị nguyên