Tìm y
1 ) y x 5 + y x 6 + y x 2 - y x 3 = 20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) \(\dfrac{-5}{8}=\dfrac{x}{16}\)
\(\Rightarrow x=\dfrac{16.-5}{8}=-10\)
\(\dfrac{3x}{9}=\dfrac{2}{6}\)
\(\Rightarrow3x=\dfrac{2.9}{6}=3\)
\(\Rightarrow x=1\)
b) \(\dfrac{x+3}{15}=\dfrac{1}{3}\)
\(\Rightarrow x+3=\dfrac{1.15}{3}=5\)
\(\Rightarrow x=2\)
\(\dfrac{6}{2x+1}=\dfrac{2}{7}\)
\(\Rightarrow2x+1=\dfrac{6.7}{2}=21\)
\(\Rightarrow x=10\)
c) \(\dfrac{4}{x-6}=\dfrac{y}{24}=\dfrac{-12}{18}\)
\(\Rightarrow\dfrac{4}{x-6}=\dfrac{-12}{18}\)
\(\Rightarrow x-6=\dfrac{18.4}{-12}=-6\)
\(\Rightarrow x=0\)
\(\Rightarrow\dfrac{y}{24}=\dfrac{-12}{18}\)
\(\Rightarrow y=\dfrac{-12.24}{18}=-16\)
\(\dfrac{3-x}{-12}=\dfrac{16}{y+1}=\dfrac{192}{-72}\)
\(\Rightarrow\dfrac{3-x}{-12}=\dfrac{192}{-72}\)
\(\Rightarrow3-x=\dfrac{192.-12}{-72}=32\)
\(\Rightarrow x=-29\)
\(\Rightarrow\dfrac{16}{y+1}=\dfrac{192}{-72}\)
\(\Rightarrow y+1=\dfrac{16.-72}{192}=-6\)
d) \(\dfrac{-2}{3}< \dfrac{x}{5}< \dfrac{-1}{6}\)
\(\Rightarrow\dfrac{-20}{30}< \dfrac{6x}{30}< \dfrac{-5}{30}\)
\(\Rightarrow6x\in\left\{-18;-12;-6\right\}\)
\(\Rightarrow x\in\left\{-3;-2;-1\right\}\)
\(\dfrac{-1}{5}\le\dfrac{x}{8}\le\dfrac{1}{4}\)
\(\Rightarrow\dfrac{-8}{40}\le\dfrac{5x}{40}\le\dfrac{10}{40}\)
\(\Rightarrow5x\in\left\{-5;0;5;10\right\}\)
\(\Rightarrow x\in\left\{-1;0;1;2\right\}\)
e) \(\dfrac{x+46}{20}=x\dfrac{2}{5}\)
\(\Rightarrow\dfrac{x+46}{20}=x+\dfrac{2}{5}\)
\(\Rightarrow\dfrac{x+46}{20}=\dfrac{5x+2}{5}\)
\(\Rightarrow5.\left(x+46\right)=20.\left(5x+2\right)\)
\(\Rightarrow5x+230=100x+40\)
\(\Rightarrow5x-100x=40-230\)
\(\Rightarrow-95x=-190\)
\(\Rightarrow x=-190:-95\)
\(\Rightarrow x=2\)
\(y\dfrac{5}{y}=\dfrac{86}{y}\)
\(\Rightarrow y+\dfrac{5}{y}=\dfrac{86}{y}\)
\(\Rightarrow\dfrac{y^2+5}{y}=\dfrac{86}{y}\)
\(\Rightarrow y^2+5=86\)
\(\Rightarrow y^2=86-5\)
\(\Rightarrow y^2=81\)
\(\Rightarrow\left[{}\begin{matrix}y=9\\y=-9\end{matrix}\right.\)
Chúc bạn học tốt!
\(\dfrac{4}{x}=\dfrac{y}{21}=\dfrac{28}{49}=\dfrac{28:7}{49:7}=\dfrac{4}{9}\\ Vậy:x=\dfrac{4.9}{4}=9\\ y=\dfrac{4.21}{9}=\dfrac{28}{3}\)
\(\dfrac{x}{2}=\dfrac{3}{y}\\ \Leftrightarrow x.y=2.3=6\\ Vậy:\left[{}\begin{matrix}\left(x;y\right)=\left(1;6\right)=\left(6;1\right)\\\left(x;y\right)=\left(2;3\right)=\left(3;2\right)\end{matrix}\right.\)
Ta có:
x và y là hai đại lượng tỉ lệ thuận
\(\Rightarrow\)\(\frac{x1}{y1}=\frac{x2}{y2}\)
\(\Rightarrow\)\(x1=x2.\frac{y1}{y2}=2.\left(\frac{-3}{4}\right):\frac{1}{7}=\frac{-21}{2}\)
x và y là hai đại lượng tỉ lệ thuận
\(\Rightarrow\frac{x1}{y1}=\frac{x2}{y2}\)
\(\Leftrightarrow\frac{x1}{x2}=\frac{y1}{y2}=\frac{\left(y1-x1\right)}{\left(y2-x2\right)}\)( tính chất dãy tỉ số bằng nhau )
Thay số ta có:
\(\frac{x1}{\left(-4\right)}=\frac{y1}{3}=\frac{-2}{\left(3-\left(-4\right)\right)}\)
\(\Leftrightarrow\frac{x1}{\left(-4\right)}=\frac{y1}{3}=\frac{-2}{7}\)
\(\Rightarrow x1=\left(-4\right).\left(\frac{-2}{7}\right)=\frac{8}{7}\)
\(y1=3.\left(\frac{-2}{7}\right)=\frac{-6}{7}\)
\(2,\frac{9}{x}=\frac{2}{5}-\frac{7}{20}\)
\(\Rightarrow\frac{9}{x}=\frac{1}{20}\)
\(\Rightarrow x=9.20\)
\(\Rightarrow x=180\)
\(\frac{x}{5}=\frac{5}{6}+\left(-\frac{19}{30}\right)\)
\(\frac{\Rightarrow x}{5}=\frac{1}{5}\)
\(\Rightarrow x=1\)
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
Câu 3:
\(\dfrac{x}{y}=\dfrac{5}{9}\Rightarrow\dfrac{x}{5}=\dfrac{y}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{x-y}{5-9}=\dfrac{-40}{-4}=10\)
\(\dfrac{x}{5}=10\Rightarrow x=5\\ \dfrac{y}{9}=10\Rightarrow y=90\)
Câu b:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{5x-2y}{10-6}=\dfrac{28}{4}=7\)
\(\dfrac{x}{2}=7\Rightarrow x=14\\ \dfrac{y}{3}=7\Rightarrow y=21\)
Câu c:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{10}=\dfrac{x+y-1}{5+7-10}=\dfrac{20}{2}=10\)
\(\dfrac{x}{5}=10\Rightarrow x=50\\ \dfrac{y}{7}=10\Rightarrow y=70\\ \dfrac{z}{10}=10\Rightarrow z=100\)
Câu d:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{3x-2y+2z}{9-8+10}=\dfrac{121}{11}=11\)
\(\dfrac{x}{3}=11\Rightarrow x=3\\ \dfrac{y}{4}=11\Rightarrow y=44\\ \dfrac{z}{5}=11\Rightarrow z=55\)
Câu e:
\(\dfrac{x}{4}=\dfrac{y}{2}\Rightarrow\dfrac{x}{8}=\dfrac{y}{6}\\\dfrac{y}{3}=\dfrac{z}{5}\Rightarrow\dfrac{y}{6}=\dfrac{z}{10}\\ \Rightarrow\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{10} \)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{10}=\dfrac{x+y-z}{8+6-10}=\dfrac{20}{4}=5\)
\(\dfrac{x}{8}=5\Rightarrow x=40\\ \dfrac{y}{6}=5\Rightarrow y=30\\ \dfrac{z}{10}=5\Rightarrow z=50\)
3) \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{x-y}{5-9}=\dfrac{-40}{-4}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=10.5=50\\y=10.9=90\end{matrix}\right.\)
4) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{5x}{10}=\dfrac{2y}{6}=\dfrac{5x-2y}{10-6}=\dfrac{28}{4}=7\)
\(\Rightarrow\left\{{}\begin{matrix}x=7.2=14\\y=7.3=21\end{matrix}\right.\)
5) \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{10}=\dfrac{x+y-z}{5+7-10}=\dfrac{20}{2}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=10.5=50\\y=10.7=70\\z=10.10=100\end{matrix}\right.\)
6) \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{3x}{9}=\dfrac{2y}{8}=\dfrac{2z}{10}=\dfrac{3x-2y+2z}{9-8+10}=\dfrac{121}{11}=11\)
\(\Rightarrow\left\{{}\begin{matrix}x=11.3=33\\y=11.4=44\\z=11.5=55\end{matrix}\right.\)
7) \(\Rightarrow\dfrac{x}{12}=\dfrac{y}{6}=\dfrac{z}{10}=\dfrac{x+y-z}{12+6-10}=\dfrac{20}{8}=\dfrac{5}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}.12=30\\y=\dfrac{5}{2}.6=15\\z=\dfrac{5}{2}.10=25\end{matrix}\right.\)
y x 5 + y x 6 + y x 2 - y x 3 = 20
y x ( 5 + 6 + 2 - 3 ) = 20
y x 10 = 20
y = 20 : 10
y = \(2\)
y x 5 + y x 6 + y x 2 - y x 3 = 20
(5+6+2-3)y = 20
10y = 20
y=2