Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM=CN
a) Chứng minh: tam giác AMN cân
b) Kẻ BE vuông góc với AM; CF vuông góc với AN. Chứng minh: tam giác BME = tam giác CNF
c) EB và FC kéo dài cắt nhau tại O. Chứng minh: AO là tia phân giác của góc MAN
d) Qua M kẻ đường thẳng vuông góc với AM
Qua N kẻ đường thẳng vuông góc với AN
Chúng cắt nhau tại H. Chứng minh: ba điểm A, O, H thẳng hàng
a: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔABM=ΔACN
Suy ra: AM=AN
hay ΔAMN cân tại A
b: Xét ΔBME vuông tại E và ΔCNF vuông tại F có
BM=CN
\(\widehat{M}=\widehat{N}\)
Do đó: ΔBME=ΔCNF