Chứng minh rằng tồn tại hai sô nguyên liên tiếp mà hiệu của hai số đó lớn hơn 2021
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gia su ton 2 so thoa man dk tren
goi 2 so do la a.b
goi c uoc chung >9
ta co a= ck
b= cx
khi do k va x phai la 2 so tu nhien lien tiep
gia su x= k +1
khi do b= ck+c
ma c≥10≥10
suy ra b-a>10
.........................................trai voi gia thiet
Xét hai số \(2022!+1\)và \(2022!+2022\). Hai số này có hiệu là \(2021\), ta sẽ chứng minh không tồn tại số nguyên tố nào nằm giữa hai số này.
Thật vậy, ta có \(2022!+k\)với \(1< k\le2022\)luôn chia hết cho \(k\)mà \(2022!+k>k\)nên số đó không là số nguyên tố.
Vậy tồn tại hai số nguyên tố liên tiếp mà hiệu của chúng lớn hơn \(2021\).
\(3^x-9y+113=6y^4\)
Với \(x\ge1\)ta có: \(3^x⋮3,9y⋮3,6y^4⋮3,113⋮̸3\)nên phương trình vô nghiệm.
Với \(x=0\)có: \(6y^4+9y-114=0\)
có nghiệm nguyên duy nhất \(y=2\).
Vậy phương trình có nghiệm duy nhất \(\left(0,2\right)\).
mình chỉ giải được câu 1 thôi nhé
số nguyên tố là số >1 có 2 ước
gọi số đó là 12k+9
a=12k+9 mà số nguyên tố là số >1 suy ra a >9 achia hết cho 3
vậy không có số nguyên tố thõa mãn