K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 6: 

a: Xét ΔACD và ΔECD có

CA=CE

\(\widehat{ACD}=\widehat{ECD}\)

CD chung

Do đó: ΔACD=ΔECD

b: Ta có: ΔACD=ΔECD

nên DA=DE

mà DE<DB

nên DA<DB

a: \(BC=\sqrt{AB^2+AC^2}=15\left(cm\right)\)

b: Xét ΔABC có AB<AC

mà hình chiếu của AB trên BC là HB

và hình chiếu của AC trên BC là HC

nên HB<HC

11 tháng 5 2022

a, Xét Δ AHC vuông tại H, có :

\(AB^2=AH^2+HB^2\)

=> \(AB^2=12^2+9^2\)

=> \(AB^2=225\)

=> AB = 15 (cm)

Xét Δ AHC vuông tại H, có :

\(AC^2=AH^2+HC^2\)

=> \(AC^2=12^2+16^2\)

=> \(AC^2=400\)

=> AC = 20 (cm)

Xét Δ ABC, có :

\(BC^2=AB^2+AC^2\) (định lí Py - ta - go đảo)

=> Δ ABC vuông tại A

9 tháng 6 2020

a. áp dụng pytago cho tam giác ABC ta có: \(BC=\sqrt{9^2+12^2}=15\)

góc C đối diện cạnh AB

góc B đối diện cạnh AC. Mà AC>AB nên góc B > góc C

b. xét 2 tam giác MHC và MKB có:

MK=MK

MB=MC

Góc HMC = góc KMB (đối đỉnh) => Tam giác MHC= MKB ( c.g.c)

=> Góc K = góc K = 90 => HK vuông góc BK.

mà HK vuông góc AC (gt) => BK//AC (cùng vuông góc với HK)

c. Xét 2(GA+GB+GC)= (GA+GB) + (GB+GC) + (GC+GA)

+ GA+GB > AB = 9

+GB+GC > BC = 15

+GC+GA > AC = 12

=>  2(GA+GB+GC) > 9+15+12=36

=> GA+GB+GC > 18 => đccm

a: AH=15cm

\(AB=5\sqrt{34}\left(cm\right)\)

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)

hay AC=4(cm)

Vậy: AC=4cm

b) Xét ΔABD vuông tại A và ΔMBD vuông tại M có

BD chung

\(\widehat{ABD}=\widehat{MBD}\)(BD là tia phân giác của \(\widehat{ABM}\))

Do đó: ΔABD=ΔMBD(cạnh huyền-góc nhọn)

c) Xét ΔDMC vuông tại M có DC là cạnh huyền(DC là cạnh đối diện với \(\widehat{CMD}=90^0\))

nên DC là cạnh lớn nhất trong ΔDMC(Định lí)

\(\Leftrightarrow DC>DM\)(1)

Ta có: ΔABD=ΔMBD(cmt)

nên DA=DM(hai cạnh tương ứng)(2)

Từ (1) và (2) suy ra DA<DC

d) Xét ΔADI vuông tại A và ΔMDC vuông tại M có 

DA=DM(cmt)

\(\widehat{ADI}=\widehat{MDC}\)(hai góc tương ứng)

Do đó: ΔADI=ΔMDC(cạnh góc vuông-góc nhọn kề)

Suy ra: DI=DC(hai cạnh tương ứng)

Xét ΔDIC có DI=DC(cmt)

nên ΔDIC cân tại D(Định nghĩa tam giác cân)

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

13 tháng 2 2016

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ