K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 7:

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot AB=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔHAC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:

\(AF\cdot AC=AH^2\left(2\right)\)

Từ (1), (2) suy ra \(AE\cdot AB=AF\cdot AC\)

18 tháng 10 2021

undefined

18 tháng 10 2021

Hình bé quá, em đăng tách ra từng bài một nhé!

18 tháng 10 2021

số bé quá ko thấy

26 tháng 8 2021

\(6x^2+xy-7x-2y^2+7y-5=-\left(y-2x-1\right)\left(2y+3x-5\right)\)

26 tháng 8 2021

\(6x^2+xy-7x-2y^2+7y-5=-2y\left(y-2x-1\right)-3x\left(y-2x-1\right)+5\left(y-2x-1\right)=-\left(y-2x-1\right)\left(2y+3x-5\right)\)

21 tháng 8 2023

Bài 4:

a) Thay x=49 vào B ta có:

\(B=\dfrac{1-\sqrt{49}}{1+\sqrt{49}}=-\dfrac{3}{4}\)

b) \(A=\left(\dfrac{15-\sqrt{x}}{x-25}+\dfrac{2}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\)

\(A=\left[\dfrac{15-\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{2\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right]\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\)

\(A=\dfrac{15-\sqrt{x}+2\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\)

\(A=\dfrac{\sqrt{x}+5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\)

\(A=\dfrac{1}{\sqrt{x}-5}\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\)

\(A=\dfrac{1}{\sqrt{x}+1}\)

c) Ta có: 

\(M=A-B=\dfrac{1}{\sqrt{x}+1}-\dfrac{1-\sqrt{x}}{\sqrt{x}+1}\)

\(M=\dfrac{1-1+\sqrt{x}}{\sqrt{x}+1}\)

\(M=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

\(M=\dfrac{\sqrt{x}+1-1}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}=1-\dfrac{1}{\sqrt{x}+1}\)

Mà M nguyên khi:

\(1\) ⋮ \(\sqrt{x}+1\)

\(\Rightarrow\sqrt{x}+1\in\left\{1;-1\right\}\)

Mà: \(\sqrt{x}+1\ge1\)

\(\Rightarrow\sqrt{x}+1=1\)

\(\Rightarrow\sqrt{x}=0\)

\(\Rightarrow x=0\left(tm\right)\)

Vậy M nguyên khi x=0

NV
27 tháng 7 2021

2.1

ĐKXĐ: \(x\ge-\dfrac{1}{16}\)

\(x^2-x-20-2\left(\sqrt{16x+1}-9\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+4\right)-\dfrac{32\left(x-5\right)}{\sqrt{16x+1}+9}=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+4-\dfrac{32}{\sqrt{16x+1}+9}\right)=0\) (1)

Do \(x\ge-\dfrac{1}{16}\Rightarrow\left\{{}\begin{matrix}\dfrac{32}{\sqrt{16x+1}+9}< \dfrac{32}{9}\\x+4\ge-\dfrac{1}{16}+4=\dfrac{63}{16}>\dfrac{32}{9}\end{matrix}\right.\)

\(\Rightarrow x+4-\dfrac{32}{\sqrt{16x+1}+9}>0\)

Nên (1) tương đương:

\(x-5=0\)

\(\Leftrightarrow x=5\)

Câu 2.2, 2.3 đề lỗi không dịch được

5 tháng 1 2022

bạn đăng tách ra tầm 10 câu mỗi lần đăng nha, chứ dài ntnay ngại làm lắm~

5 tháng 1 2022

e có tách 3 bài ra rồi ạ, phiền anh/chị/bạn giúp e với ạ, e cảm ơn ạ