cho điểm E thuộc cạnh bên BC cua hinh thang ABCD vẽ đường đi qua C và song song voi AE cắt AD ở K . Chứng minh BK//DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi I,M lần lượt là giao của AE với BK và CK với AB
AI//MK và IE//KC
nên AI/MK=BI/BK=IE/KC
=>AI/IE=MK/KC
MA//DC
=>MK/KC=AK/KD=AI/IE
=>KI//DE
=>KB//DE
a) gọi N là giao điểm của EF và AC
ta có \(DI//EF\Rightarrow\widehat{AID}=\widehat{ENC}\)(so le trong)
\(BK//EF\Rightarrow\widehat{CKB}=\widehat{ENC}\) (đồng vị)
do đó \(\widehat{AID}=\widehat{CKB}\)
Ta lại có \(\widehat{ADI}=180^o-\widehat{AID}-\widehat{IAD}\)
\(\widehat{CBK}=180^o-\widehat{CKB}-\widehat{KCB}\)
\(\widehat{AID}=\widehat{CKB}\) (cmt)
\(\widehat{IAD}=\widehat{KCB}\) (vì AB // CD)
nên \(\widehat{ADI}=\widehat{CBK}\)
Xét tam giác ADI và tam giác CBK có
\(\widehat{ADI}=\widehat{CBK}\)
AD = BC (vì ABCD là hình bình hành)
\(\widehat{IAD}=\widehat{KCB}\) (vì AB // CD)
do đó tam giác ADI = tam giác CBK (g . c . g)
=> AI = CK (2 cạnh tương ứng)
Bài 6 :
Tự vẽ hình nhá :)
a) Gọi O là giao điểm của AC và EF
Xét tam giác ADC có :
EO // DC => AE/AD = AO/AC (1)
Xét tam giác ABC có :
OF // DC
=> CF/CB = CO/CA (2)
Từ (1) và (2) => AE/AD + CF/CB = AO/AC + CO/CA = AO + CO/AC = AC/AC = 1 => đpcm
Bài 7 :
a) Do EF // AB => CF / CA = EF / AB => CF / EF = AC / AB (1)
Dựng MG // AC và M là trung điểm của cạnh BC => GM là đường trung bình của tam giác ABC => G là trung điểm của cạnh AB =>AG = BG
Do DK // GM => AD / AG = DK / GM => AD / BG = DK / GM
=> DK / AD = GM / BG = \(\frac{\frac{AC}{2}}{\frac{AB}{2}}=\frac{AC}{AB} \left(2\right)\)
Từ (1) và (2) => CF / EF = DK / AD
Mà tứ giác ADEF là hình bình hành ( vì EF // AD và DE // AF ) nên AD = È
=> CF = DK ( đpcm )
Bài 8 :
Ta có : AB = AM + MB = 11 + 8 = 19 ( cm )
Áp dụng hệ quả định lí Ta-lét vào tam giác ABC, ta có :
AM / AB = AN / AC => AM + AB / AB = AN + AC / AC => 19 + 11 / 19 = AN + 38 / 38 => 30/19 = 38 + AN / 38
=> 1140 = 19.AN + 722
=> AN = ( 1140 - 722 ) / 19 = 22 ( cm )
=> NC = 38 - 12 = 26 ( cm )
Kéo dài CK,DE cắt AB lần lượt ở M,N.
*Áp dụng hệ quả đ/l Thales, ta có:
BMC có AE//CM (gt) ABAM=BEECABAM=BEEC (1)
BNE có BN//DC BNDC=BEECBNDC=BEEC (2)
AMK có AM//DC AMDC=AKDKAMDC=AKDK (3)
*(1),(2) suy ra ABAM=BNDCABAM=BNDC
ABBN=AMDCABBN=AMDC, lại có (3)
ABBN=AKDKABBN=AKDK
Q.E.D
Kéo dài CK,DE cắt AB lần lượt ở M,N.
*Áp dụng hệ quả đ/l Thales, ta có:
BMC có AE//CM (gt) ABAM=BEECABAM=BEEC (1)
BNE có BN//DC BNDC=BEECBNDC=BEEC (2)
AMK có AM//DC AMDC=AKDKAMDC=AKDK (3)
*(1),(2) suy ra ABAM=BNDCABAM=BNDC
ABBN=AMDCABBN=AMDC, lại có (3)
ABBN=AKDKABBN=AKDK
tích nha
Q.E.D