1cho tam giác ABC hai góc B và C nhọn. Điểm M nằm giữa B và C. Gọi d là tổng khoảng cách từ B và C đến AM. Chứng minh rằng d<hoặc bằng BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BH vuong goc voi AM=>BH=<BM
CE vuong goc voi AM=>CE=<CM
=>BH+CE=<BM+CM
=>d=<BC
Dau bang xay ra khi BH=BM; CE=CM
=>AM vuong goc voi BC
d = BH + CK
a) Ta có: BH là đoạn vuông góc kẻ từ B đến đường thẳng AM => BH là đoạn ngắn nhất kẻ từ B đến đường thẳng AM
M thuộc đường thẳng AM
=> BH \(\le\) BM (1)
Tương tự, ta có: CK là đoạn vuông góc kẻ từ C đến đường thẳng AM => CK là đoạn ngắn nhất kẻ từ C đến AM
=> CK \(\le\) CM (2)
Từ (1)(2) => d = BH + CK \(\le\) BM + CM = BC
Dấu "=" xảy ra khi dấu "=" ở (1) và (2) xảy ra <=> BH = BM và CK = CM
=> BM và CM vuông góc với AM => BC vuông góc với AM
Khi đó d = BC có giá trị lớn nhất
vậy Khi M là chân đường vuông góc hạ từ A xuống BC thì d lớn nhất
khoảng cách là vuông góc bạn nhé
đặt 2 điểm o và k lần lượt là điểm mà b vuông góc vs am và c vuông góc vs am
suy ra
bo < bm đường xiên và đường vuông góc
ck < cm DXVDVG giống trên nha bạn
suy ra d lớn nhất bằng bm + cm = cb
suy ra bm vuông góc vs am
vậy am là đường cao