cho đg tròn tâm O đg kính AB=2R.C là trung điểm OA.Dây MN vuông góc OA tại C.Gọi k là điểm tuỳ ý trên cung nhỏ BM.H là giao điểm AK,MN.Tìm vị trí của K để tổng KM+KN+KB có giá trị lớn nhất và tìm giá trị đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Xét (O) có
ΔKAB nội tiếp đường tròn(K,A,B\(\in\)(O))
AB là đường kính
Do đó: ΔKAB vuông tại K(Định lí)
\(\Leftrightarrow\widehat{AKB}=90^0\)
hay \(\widehat{HKB}=90^0\)
Xét tứ giác BKHC có
\(\widehat{HKB}\) và \(\widehat{HCB}\) là hai góc đối
\(\widehat{HKB}+\widehat{HCB}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: BKHC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
hay B,K,H,C cùng thuộc một đường tròn(đpcm)
Mình giải giúp câu a, b, cho bạn nhé bạn
a, tam giác ABK có : AB là đường kính ; K thuộc (O)
suy ra góc AKB = 90 độ
Xét tứ giác BCHK có : góc MCB + góc AKB = 90 độ + 90 độ = 180 độ
suy ra tứ giác BCHK nội tiếp đường tròn
b, xét tam giác ACH và tam giác AKB có ;
góc A chung
góc ACH = góc AKB = 90 độ
suy ra tam giác ACH đồng dạng với tam giác AKB (g. g)
suy ra AH/AB = AC/AK hay AH/2R = R chia 2/AK
khi và chỉ khi AH . AK = 2R . R/2 = R bình
vậy AH.AK= R bình
a: Xét (O) có
ΔAKB nội tiếp
AB là đường kính
=>ΔAKB vuông tại K
Xét tứ giác BKHI có
góc BKH+góc BIH=180 độ
=>BKHI là tứ giác nội tiếp
b: Xét ΔAHI vuông tại I và ΔABK vuông tại K có
góc HAI chung
=>ΔAHI đồng dạng với ΔABK
=>AH/AB=AI/AK
=>AH*AK=AI*AB=1/4*R^2
a, H I B ^ = H K B ^ = 180 0
=> Tứ giác BIHK nội tiếp
b, Chứng minh được: DAHI ~ DABK (g.g)
=> AH.AK = AI.AB = R 2 (không đổi)
c, Chứng minh được MCND là hình chữ nhật từ đó => Đpcm
Khi k là trung điểm cung MB thì KN+KB là lớn nhất. Và khi đó KN là đường kính của đường tròn (tam giác BMN là tam giác đều)- tổng ba đoạn bằng 4R