K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2016

=-3,068712231

25 tháng 5 2016

3,068712231

K mình nha

1 tháng 8 2018

a)  \(A=\sqrt{10+\sqrt{99}}=\sqrt{10+3\sqrt{11}}=\frac{1}{\sqrt{2}}.\sqrt{20+6\sqrt{11}}\)

\(=\frac{1}{\sqrt{2}}.\sqrt{\left(3+\sqrt{11}\right)^2}=\frac{3+\sqrt{11}}{2}\)

b)  \(B=\sqrt{21+6\sqrt{6}}-\sqrt{21-6\sqrt{6}}=\sqrt{\left(3\sqrt{2}+\sqrt{3}\right)^2}-\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\)

\(=3\sqrt{2}+\sqrt{3}-3\sqrt{2}+\sqrt{3}=2\sqrt{3}\)

c) bn ktra lại đề

d) ĐK:  \(x\ge0\)

 \(\sqrt{x+1+2\sqrt{x}}=\sqrt{\left(\sqrt{x}+1\right)^2}=\sqrt{x}+1\)

e) đk:  \(x\ge-1\)

 \(\sqrt{2x+3+2\sqrt{x^2+3x+2}}=\sqrt{x+1+2\sqrt{\left(x+1\right)\left(x+2\right)}+x+2}\)

\(=\sqrt{\left(\sqrt{x+1}+\sqrt{x+2}\right)^2}=\sqrt{x+1}+\sqrt{x+2}\)

a) Ta có: \(\frac{\sqrt{2}+\sqrt{2+\sqrt{3}}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)

\(=\frac{2+\sqrt{4+2\sqrt{3}}}{2-\sqrt{4-2\sqrt{3}}}\)

\(=\frac{2+\sqrt{\left(\sqrt{3}+1\right)^2}}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\frac{2+\left|\sqrt{3}+1\right|}{2-\left|\sqrt{3}-1\right|}\)

\(=\frac{2+\sqrt{3}+1}{2-\sqrt{3}+1}\)(Vì \(\sqrt{3}>1>0\))

\(=\frac{3+\sqrt{3}}{3-\sqrt{3}}=\frac{\sqrt{3}+1}{\sqrt{3}-1}\)

NV
3 tháng 9 2020

\(a=\frac{2+\sqrt{4+2\sqrt{3}}}{2-\sqrt{4-2\sqrt{3}}}=\frac{2+\sqrt{\left(\sqrt{3}+1\right)^2}}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}=\frac{2+\sqrt{3}+1}{2-\sqrt{3}+1}=\frac{3+\sqrt{3}}{3-\sqrt{3}}=\frac{\left(3+\sqrt{3}\right)^2}{\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)}\)

\(=\frac{12+6\sqrt{3}}{6}=2+\sqrt{3}\)

Xét \(A=\sqrt{3+\sqrt{7}}+\sqrt{3-\sqrt{7}}>0\)

\(A^2=6+2\sqrt{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}=6+2\sqrt{2}\)

\(\Rightarrow A=\sqrt{6+2\sqrt{2}}\)

\(\Rightarrow\sqrt{3+\sqrt{7}}+\sqrt{3-\sqrt{7}}-\sqrt{6+2\sqrt{2}}=\sqrt{6+2\sqrt{2}}-\sqrt{6+2\sqrt{2}}=0\)

15 tháng 6 2017

\(2\sqrt{4+\sqrt{6-2\sqrt{5}}}\left(\sqrt{10}-\sqrt{2}\right)\) = \(2\sqrt{4+\sqrt{\left(\sqrt{5}-1\right)^2}}\left(\sqrt{10}-\sqrt{2}\right)\)

= \(2\sqrt{4+\sqrt{5}-1}\left(\sqrt{10}-\sqrt{2}\right)\) = \(\sqrt{2}\sqrt{6+2\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\)

= \(\sqrt{2}\sqrt{\left(\sqrt{5}+1\right)^2}\left(\sqrt{10}-\sqrt{2}\right)\) = \(\sqrt{2}\left(\sqrt{5}+1\right)\left(\sqrt{10}-\sqrt{2}\right)\)

= \(\sqrt{10}+\sqrt{2}\left(\sqrt{10}-\sqrt{2}\right)\) = \(10-2=8\)

15 tháng 6 2017

dòng 2 : ta đưa nò về dạng hằng đẳng thức ; rồi đưa ra khỏi căn

tiếp là ta đưa \(\sqrt{2}\) vào để biến đổi thành hằng đẳng thức tiếp để bỏ căn

vì 2 = \(\sqrt{2}.\sqrt{2}\) nên ta đưa \(\sqrt{2}\) vào thì còn lại \(\sqrt{2}\) bênh ngoài

hiểu chưa

AH
Akai Haruma
Giáo viên
17 tháng 7 2018

Bài 1: Ta có:

\(\frac{\sqrt{8-4\sqrt{3}}}{\sqrt{\sqrt{6}-\sqrt{2}}}\sqrt{\sqrt{6}+\sqrt{2}}=\frac{\sqrt{8-4\sqrt{3}}}{\sqrt{(\sqrt{6}-\sqrt{2})(\sqrt{6}+\sqrt{2})}}(\sqrt{6}+\sqrt{2})\)

\(=\frac{\sqrt{8-4\sqrt{3}}}{\sqrt{6-2}}(\sqrt{6}+\sqrt{2})\)

\(=\frac{\sqrt{6+2-2\sqrt{6.2}}}{2}(\sqrt{6}+\sqrt{2})\)

\(=\frac{\sqrt{(\sqrt{6}-\sqrt{2})^2}}{2}(\sqrt{6}+\sqrt{2})\)

\(=\frac{(\sqrt{6}-\sqrt{2})(\sqrt{6}+\sqrt{2})}{2}=\frac{6-2}{2}=2\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2018

Bài 2:

\(A=\sqrt{8+2\sqrt{10+2\sqrt{5}}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)

\(\Rightarrow A^2=8+2\sqrt{10+2\sqrt{5}}+8-2\sqrt{10+2\sqrt{5}}+2\sqrt{(8+2\sqrt{10+2\sqrt{5}})(8-2\sqrt{10+2\sqrt{5}})}\)

\(=16+2\sqrt{8^2-(2\sqrt{10+2\sqrt{5}})^2}\)

\(=16+2\sqrt{64-4(10+2\sqrt{5})}\)

\(=16+2\sqrt{24-8\sqrt{5}}=16+2\sqrt{20+4-2\sqrt{20.4}}\)

\(=16+2\sqrt{(\sqrt{20}-\sqrt{4})^2}\)

\(=16+2(\sqrt{20}-2)=12+2\sqrt{20}=10+2+2\sqrt{10.2}=(\sqrt{10}+\sqrt{2})^2\)

\(\Rightarrow A=\sqrt{10}+\sqrt{2}\)

3 tháng 1 2017

\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{10}};\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{10}};...;\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}};\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)

\(\Rightarrow A>\frac{100.1}{\sqrt{100}}=\frac{100}{10}=10\)

Vậy A > 10

3 tháng 1 2017

ta có \(\frac{1}{\sqrt{1}}>\frac{1}{10}\)

         \(\frac{1}{\sqrt{2}}>\frac{1}{10}\)

        ..............................

\(\frac{1}{\sqrt{99}}>\frac{1}{10}\)

        \(\frac{1}{\sqrt{100}}=\frac{1}{10}\)

\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}\)(có 100 số 1/10)

\(\Rightarrow A>\frac{100}{10}=10\)

25 tháng 6 2017

1.  \(\frac{1}{2}\sqrt{48}-2\sqrt{75}-\frac{\sqrt{33}}{\sqrt{11}}+\sqrt{84}\)= -6,423305878

2. \(\sqrt{150}+\sqrt{1,6}\sqrt{60}+4,5\sqrt{2\frac{2}{3}}-\sqrt{6}\)= 24,79207036

NHA  Vũ Hoàng Thiên An ! ! !

K VÀ KB NHA !

10 tháng 8 2017

1)

dat \(a=\sqrt[3]{x+1};b=\sqrt[3]{7-x}\)

ta co b=2-a

a^3+b^3=x+1+7-x=8 

a^3+b^3=a^3+b^3+3ab(a+b)

ab(a+b)=0

suy ra a=0 hoac b=0 hoac a=-b

<=> x=-1; x=7 

a=-b

a^3=-b^3

x+1=x+7 (vo li nen vo nghiem)

cau B tuong tu

2)

tat ca cac bai tap deu chung 1 dang do la

\(\sqrt[3]{a+m}+\sqrt[3]{b-m}\)voi m la tham so

dang nay co 2 cach 

C1 lap phuong VD: \(B^3=10+3\sqrt[3]{< 5+2\sqrt{13}>< 5-2\sqrt{13}>}\left(B\right)\)

B^3=10-9B

B=1 cach nay nhanh nhung kho nhin

C2 dat an

\(a=\sqrt[3]{5+2\sqrt{13}};b=\sqrt[3]{5-2\sqrt{13}}\)

de thay B=a+b

a^3+b^3=10

ab=-3

B^3=10-9B

suy ra B=1

tuong tu giai cac cau con lai.

10 tháng 8 2017

Bài 1:

a. Đặt \(a=\sqrt[3]{x+1}\)\(b=\sqrt[3]{7-x}\). Ta có:

\(\hept{\begin{cases}a+b=2\\a^3+b^3=8\end{cases}\Leftrightarrow a^3+\left(2-a\right)^3=8\Leftrightarrow...\Leftrightarrow\orbr{\begin{cases}a=0\\a=2\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}a=0\\b=2\end{cases}}\)hoặc \(\hept{\begin{cases}a=2\\b=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\sqrt[3]{x+1}=0\\\sqrt[3]{7-x}=2\end{cases}}\)hoặc \(\hept{\begin{cases}\sqrt[3]{x+1}=2\\\sqrt[3]{7-x}=0\end{cases}}\)

\(\Leftrightarrow x=-1\)hoặc \(x=7\)

1 tháng 8 2018

\(a\text{) }\sqrt{10+\sqrt{9}}=\sqrt{10+3}=\sqrt{13}\)

\(b\text{) }\sqrt{21+6\sqrt{6}}-\sqrt{21-6\sqrt{6}}\\ =\sqrt{18+3+2\sqrt{54}}-\sqrt{18+3-2\sqrt{54}}\\ =\sqrt{\left(\sqrt{18}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{18}-\sqrt{3}\right)^2}\\ =\sqrt{18}+\sqrt{3}-\sqrt{18}+\sqrt{3}\\ =2\sqrt{3}\)

\(d\text{) }\sqrt{x+1+2\sqrt{x}}\left(x\ge0\right)\\ =\sqrt{\left(\sqrt{x}+1\right)^2}=\sqrt{x}+1\)

\(e\text{) }\sqrt{2x+3+2\sqrt{x^2+3x+2}}\left(x\le-2;x\ge-1\right)\\ =\sqrt{\left(x+2\right)+\left(x+1\right)+2\sqrt{\left(x+1\right)\left(x+2\right)}}=\sqrt{\left(\sqrt{x+1}+\sqrt{x+2}\right)^2}=\sqrt{x+1}+\sqrt{x+2}\)

Xem lại đề câu c nha.

1 tháng 8 2018

a)\(\sqrt{10+\sqrt{9}}=\sqrt{10+3}=\sqrt{13}\)

b)\(\sqrt{21+6\sqrt{6}}-\sqrt{21-6\sqrt{6}}\)

=\(\sqrt{\left(3\sqrt{2}\right)^2+2.3\sqrt{2}.\sqrt{3}+\sqrt{3^2}}-\sqrt{\left(3\sqrt{2}\right)^2-2.3.\sqrt{2}.\sqrt{3}+\sqrt{3^2}}\)

=\(\sqrt{\left(3\sqrt{2}+\sqrt{3}\right)^2}-\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\)

=\(3\sqrt{2}+\sqrt{3}-3\sqrt{2}+\sqrt{3}\)

=\(2\sqrt{3}\)

c)\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10-2\sqrt{5}}}\)

ÁP dụng HĐT \(\sqrt{a+b}\pm\sqrt{a-b}=\sqrt{2\left(a.\sqrt{a^2\pm b}\right)}\)ta có:

=\(\sqrt{2\left(4+\sqrt{4^2-10-2\sqrt{5}}\right)}\)

=\(\sqrt{2\left(4+\sqrt{16-10-2\sqrt{5}}\right)}\)

=\(\sqrt{2\left(4+\sqrt{6-2\sqrt{5}}\right)}\)

=\(\sqrt{2\left(4+\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{5}.1+1^2}\right)}\)

=\(\sqrt{2\left(4+\sqrt{\left(\sqrt{5}-1\right)^2}\right)}\)

=\(\sqrt{2\left(4+\sqrt{5}-1\right)}\)

=\(\sqrt{2\left(3+\sqrt{5}\right)}\)

=\(\sqrt{6+\sqrt{5}}=\sqrt{5}+1\)

d)\(\sqrt{x+1+2\sqrt{x}}=\sqrt{\left(\sqrt{x}\right)^2+2\sqrt{x}.1+1^2}=\sqrt{x}+1\)