K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Thay x=16 vào A, ta được:

\(A=\dfrac{4-1}{4+3}=\dfrac{3}{7}\)

2: \(P=A:B\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+3}:\dfrac{x-3\sqrt{x}-x-6\sqrt{x}-9+x+11\sqrt{x}+6}{x-9}\)

\(=\dfrac{\sqrt{x}-1}{1}\cdot\dfrac{\sqrt{x}-3}{x+2\sqrt{x}-3}=\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)

b: kẻ đường kính AD 

góc ACD=90 độ=góc ABD

=>AC vuông góc CD và AB vuông góc BD

=>BH//CD và CH//BD

=>BDCH là hbh

=>H,N,D thẳng hàng và N là trung điểm của HD

=>NT là đường trung bình của ΔAHD

=>NT//AD và NT=1/2AD=OA

=>NT//OA

=>ATNO là hbh

EN=1/2BC

=>EN=BN

=>ΔNEB cân tại N

=>góc NBE=góc NEB

EJ=1/2AH=JH

=>ΔJEH cân tại J

=>góc JEH=góc JHE

góc NBE+Góc ACB=90 độ

góc HAC+góc ACB=90 độ

=>góc NBE=góc HAC

mà góc JHE+góc HAC=90 độ

nên góc JHE+góc NBE=90 độ

=>góc JEN=90 độ

a: Khi m=-2 thì (d): y=-5x-2

ii: Tọa độ giao điểm của (P) và (d) là:

\(\left\{{}\begin{matrix}2x^2+5x+2=0\\y=2x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{-\dfrac{1}{2};-2\right\}\\y\in\left\{\dfrac{1}{2};8\right\}\end{matrix}\right.\)

Vậy: M(-1/2;1/2); N(-2;8)

\(OM=\sqrt{\left(-\dfrac{1}{2}-0\right)^2+\left(\dfrac{1}{2}-0\right)^2}=\sqrt{\dfrac{1}{4}+\dfrac{1}{4}}=\dfrac{\sqrt{2}}{2}\)

\(ON=\sqrt{\left(-2-0\right)^2+\left(8-0\right)^2}=2\sqrt{17}\)

\(MN=\sqrt{\left(-2+\dfrac{1}{2}\right)^2+\left(8-\dfrac{1}{2}\right)^2}=\sqrt{\dfrac{9}{4}+\dfrac{225}{4}}=\dfrac{3\sqrt{26}}{2}\)

\(P=OM+ON+NM\simeq4,93\left(cm\right)\)

\(S=\sqrt{4,93\cdot\left(4,93-\dfrac{\sqrt{2}}{2}\right)\cdot\left(4.93-2\sqrt{17}\right)\left(4.93-\dfrac{3\sqrt{26}}{2}\right)}=13,7\left(cm^2\right)\)

28 tháng 1 2022

Với m=-2

Phương trình tọa độ giao điểm của (d) và (P) là:

\(2x^2=\left(-2-3\right)x+\left(-2\right)\Leftrightarrow2x^2+5x+2=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-2\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}y=\dfrac{1}{2}\\y=8\end{matrix}\right.\)

Gọi \(M\left(-\dfrac{1}{2};\dfrac{1}{2}\right),N\left(-2;8\right)\) và kẻ \(NH\perp MO\) ta có hình vẽ như sau:

Gọi phương trình đường thẳng MO là: ax+b=y

\(\left\{{}\begin{matrix}a.0+b=0\\-2a+b=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=0\\a=-4\end{matrix}\right.\)

Phương trình đường thẳng MO là: -4x=y

Gọi phương trình đường thẳng NH là: ax+b=y

Để NH vuông góc với MO thì: a.a'=-1 \(\Leftrightarrow a.\left(-4\right)=-1\Leftrightarrow a=\dfrac{1}{4}\)

Ta có: \(y=\dfrac{1}{4}x+b\Leftrightarrow\dfrac{1}{2}=\dfrac{1}{4}.\dfrac{-1}{2}+b\Rightarrow b=\dfrac{5}{8}\)

Phương trình đường thẳng NH là: \(y=\dfrac{1}{4}x+\dfrac{5}{8}\)

Phương trình tọa độ giao điểm của NH và MO là: \(-4x=\dfrac{1}{4}x+\dfrac{5}{8}\Leftrightarrow x=\dfrac{-5}{34}\Rightarrow y=\dfrac{10}{17}\)

Độ dài đoạn NH là: NH= \(\sqrt{\left(-\dfrac{5}{34}--\dfrac{1}{2}\right)^2+\left(\dfrac{10}{17}-\dfrac{1}{2}\right)^2}=\dfrac{3\sqrt{17}}{34}\)

Độ dài đoạn MO là: MO=\(\sqrt{\left(-2-0\right)^2+\left(8-0\right)^2}=2\sqrt{17}\)

Diện tích tam giác OMN là: \(S=\dfrac{1}{2}NH.OM=\dfrac{1}{2}.\dfrac{3\sqrt{17}}{34}.2\sqrt{17}\)=1,5(đvdt)

 

27 tháng 12 2023

Câu 2.

Nhiệt lượng bếp tỏa ra trong thời gian \(t=3min=180s\) là:

\(Q=UIt=RI^2t=60\cdot2,5^2\cdot180=675000J\)

Câu 3.

\(I_{Đ1}=\dfrac{U_{Đ1}}{R_{Đ1}}=\dfrac{6}{6}=1A\)

\(I_{Đ2}=\dfrac{U_{Đ2}}{R_{Đ2}}=\dfrac{1,5}{8}=\dfrac{3}{16}A\)

\(I_b=I_{Đ1}-I_{Đ2}=1-\dfrac{3}{16}=\dfrac{13}{16}A\)

\(R_b=\dfrac{U_b}{I_b}=\dfrac{1,5}{\dfrac{13}{16}}=\dfrac{24}{13}\Omega\)

Lá cây xào xạc rơi từ trên cao xuống

--> Mở rộng thành phần Vị Ngữ

9 tháng 5 2022

\(P=\dfrac{8a+15}{4a+1}=\dfrac{4a+4a+1+1+13}{4a+1}=\dfrac{4a+1}{4a+1}+\dfrac{4a+1}{4a+1}+\dfrac{13}{4a+1}=1+1+\dfrac{13}{4a+1}\)

Để P nguyên thì \(\dfrac{13}{4a+1}\in Z\) hay \(4a+1\in U\left\{13\right\}=\left\{\pm1;\pm13\right\}\)

- 4a+1=1 --> a=0

- 4a+1 = -1 --> a= -1/2 ( loại )

- 4a+1 = 13 --> a=3

-4a+1 = -13 --> a= -7/2 ( loại )

Vậy \(a\in Z=\left\{0;3;\right\}\) thì P nhận giá trị nguyên

9 tháng 5 2022

anh ơi a nguyên