Cho đưởng thẳng (d): y = (m - 1)x + 3 (m khác 1). Đưởng thẳng (d) cắt trục Ox tại A, cắt trục Oy tại B. Tìm m sao cho khoảng cách từ tâm O đến đường thẳng (d) bằng \(\frac{3}{\sqrt{5}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Điểm mà (d) luôn đi qua là:
x=0 và y=m*0-3=-3
b: góc BAO=60 độ
=>góc tạo bởi (d) với trục Ox bằng60 độ
=>\(m=tan60=\sqrt{3}\)
c: y=mx-3
=>mx-y-3=0
\(d\left(O;d\right)=\dfrac{\left|0\cdot m+0\cdot\left(-1\right)-3\right|}{\sqrt{m^2+1}}=\dfrac{3}{\sqrt{m^2+1}}\)
Để d lớn nhất thì m^2+1 nhỏ nhất
=>m=0
a giải thích câu a chi tiết thêm 1 tí đc k ạ, e vẫn chưa hiểu lắm a ạ, e cảm ơn
Gợi ý :
a) y = 2 => x = 2 hoặc -2 ( do có thể < 0 hay > 0 )
b) S(OAB) = 1 => |x| = 1 => x = 1 hoặc -1
c) Gọi khoảng cách từ O tới (d) là OH
OH bé hơn hoặc bằng khoảng cách 2 của O tới điểm cố định trên Oy
=> max = 2 khi d song^2 Ox => x = 0 => đúng mọi m
d) Thay vào biểu thức hệ thức lượng => khoảng cách từ O tới điểm mà d cắt trên Ox là 0 => d trùng Oy
e) thay x vào có kết quả
f) cắt tại điểm > 2 => biểu thức biểu diễn x > 2 ( -2/(m+3) )
Phương trình hoành độ giao điểm của (P) và (d):
x2 + 2x -m2 + 1 = 0
Để thỏa mãn yêu cầu bài toán thì pt này phải có hai nghiêm phân biệt xD và xE và xD + xE = 0
Áp dụng định lý Vi-et thì xD +xE = -2 \(\Rightarrow\)m \(\in\varnothing\)
Gọi tọa độ A ; B lần lượt là A(x1 ; 0) ; B(0 ; y1)
Vì B thuộc (d) => y1 = (m - 1).0 + 3 = 3
Ta có khoảng cách từ O đến (d) = \(\frac{3}{\sqrt{5}}\)
=> PT : \(\left(\frac{1}{\left|x_1\right|}\right)^2+\left(\frac{1}{\left|y_1\right|}\right)^2=\left(\frac{1}{\frac{3}{\sqrt{5}}}\right)^2\)
\(\Leftrightarrow\frac{1}{x_1^2}+\frac{1}{y_1^2}=\frac{5}{9}\)
\(\Leftrightarrow\frac{1}{x_1^2}+\frac{1}{9}=\frac{5}{9}\Leftrightarrow\frac{1}{x_1^2}=\frac{4}{9}\Leftrightarrow x_1=\frac{3}{2}\)
Với x1 = 3/2 ; y1 = 9 => 9 = (m - 1).1,5 + 3 <=> m = 5
Vậy m = 5 thì khoảng cách từ O đến (d) là \(\frac{3}{\sqrt{5}}\)