cho hình thang ABCD 2 đường chéo cắt nhau tại O. cho S=Sabcd, S1=Saob, S2=Scod. CHỨNG MINH \(\sqrt{S}=\sqrt{S1}+\sqrt{S2}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
27 tháng 1 2016
Tam giác ABD có OE//AB =>DO/DB = OE/AB (Theo hệ quả Đlý Ta-lét) (1)
Tam giác ABC có OF//AB =>CO/CA = OF/AB (Theo hệ quả Đlý Ta-lét) (2)
Tam giác ABO có CD//AB =>OD/OB = OC/OA (Theo hệ quả Đlý Ta-lét)
=> OD/(OB+OD) = OC/(OA+OC) hay OD/DB=CO/CA (3)
Từ (1) (2) và (3) => OE/AB = OF/AB
=> OE = OF (điều phải chứng minh.)
Chúc bạn học giỏi nha.
20 tháng 1 2023
a: Xét tứ giác ACBD có
O là trung điểm chun của AB và CD
AB=CD
=>ACBD là hình chữ nhật
b: Xét ΔACD vuông tại A và ΔCBE vuông tại C có
góc ACD=góc CBE(1/2sđ cung AD=1/2sđ cung CB)
=>ΔACD đồng dạng với ΔCBE
c: ΔACD đồng dạng vơi ΔCBE
=>góc E=góc ADC
=>góc E+góc CDF=180 độ
=>ECDF là tứ giác nội tiếp
Ta có : \(\frac{OA}{OC}=\frac{S_{AOB}}{S_{BOC}}\) và \(\frac{OA}{OC}=\frac{S_{AOD}}{S_{OCD}}\)
\(\Rightarrow\frac{S_{AOB}}{S_{BOC}}=\frac{S_{AOD}}{S_{OCD}}\)\(\Rightarrow S_{AOB}.S_{OCD}=S_{AOD}.S_{BOC}=S_1.S_2=S^2_1=S_2^2\)
Lại có : \(S=S_{AOB}+S_{BOC}+S_{COD}+S_{AOD}=S_1+S_2+2\sqrt{S_1.S_2}=\left(\sqrt{S_1}+\sqrt{S_2}\right)^2\)
\(\Rightarrow\sqrt{S}=\sqrt{S_1}+\sqrt{S_2}\) (đpcm)
cho mình hỏi là sao cm đc S aod= S boc