K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 1 2022

a.

a.

\(\widehat{BMO}+\widehat{B}+\widehat{BOM}=\widehat{BOM}+\widehat{MON}+\widehat{CON}=180^0\)

\(\Rightarrow\widehat{BMO}=\widehat{CON}\) (do \(\widehat{B}=\widehat{MON}=60^0\))

\(\Rightarrow\left\{{}\begin{matrix}\widehat{B}=\widehat{C}=60^0\\\widehat{BMO}=\widehat{CON}\end{matrix}\right.\) \(\Rightarrow\Delta OBM\sim\Delta NCO\) (g.g)

b.

Từ câu a \(\Rightarrow\dfrac{OB}{CN}=\dfrac{BM}{OC}\Rightarrow OB.OC=BM.CN\Rightarrow\dfrac{BC}{2}.\dfrac{BC}{2}=BM.CN\Rightarrow...\)

NV
14 tháng 1 2022

c.

Lần lượt kẻ OD và OE vuông góc MN và AB.

Do O cố định \(\Rightarrow\) OE cố định

Từ câu a ta có: \(\dfrac{BM}{OC}=\dfrac{OM}{ON}\Rightarrow\dfrac{BM}{OM}=\dfrac{OC}{ON}=\dfrac{OB}{ON}\) (1)

Đồng thời \(\widehat{B}=\widehat{MON}=60^0\) (2)

(1);(2) \(\Rightarrow\Delta OBM\sim\Delta NOM\left(c.g.c\right)\Rightarrow\widehat{BMO}=\widehat{OMN}\)

\(\Rightarrow\Delta_VOME=\Delta_VOMD\left(ch-gn\right)\)

\(\Rightarrow OD=OE\), mà OE cố định \(\Rightarrow OD\) cố định

30 tháng 9 2021

toi ko biet 

23 tháng 3 2016

cho tam giác đều mà góc xOy ở đâu ra z

17 tháng 4 2022

-Bài này làm tỷ lần rồi .-.

a) \(\widehat{BDO}=180^0-\widehat{BDO}-\widehat{DOB}=180^0-\widehat{DOE}-\widehat{DOB}=\widehat{COE}\).

\(\Rightarrow\)△BDO∼△COE (g-g).

b) \(\Rightarrow\dfrac{BD}{CO}=\dfrac{DO}{OE}\Rightarrow\dfrac{BD}{BO}=\dfrac{DO}{OE}\)

\(\Rightarrow\)△BDO∼△ODE (c-g-c) \(\Rightarrow\widehat{BDO}=\widehat{ODE}\Rightarrow\)DO là tia p/g góc BDE.

c) △BDO∼△COE \(\Rightarrow\dfrac{BO}{CE}=\dfrac{DO}{OE}\Rightarrow\dfrac{CO}{CE}=\dfrac{DO}{OE}\)

\(\Rightarrow\)△COE∼△ODE (c-g-c) \(\Rightarrow\widehat{CEO}=\widehat{OED}\Rightarrow\)EO là phân giác góc CED.

a: Xét ΔOAM vuông tại A và ΔOBM vuông tại B có

OM chung

\(\widehat{AOM}=\widehat{BOM}\)

Do đó: ΔOAM=ΔOBM

=>MA=MB

Xét ΔMAF vuông tại A và ΔMBE vuông tại B có

MA=MB

\(\widehat{AMF}=\widehat{BME}\)

Do đó: ΔMAF=ΔMBE

=>MF=ME

b:

Ta có: OA=OB

=>O nằm trên đường trung trực của BA(1)

Ta có: MA=MB

=>M nằm trên đường trung trực của BA(2)

Từ (1) và (2) suy ra OM là đường trung trực của BA

=>OM\(\perp\)BA