K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2018

Áp dụng bđt Svacxơ ta có : VT >= (a+b+c)^2/(2a+2b+2c) = (a+b+c)/2 = VP

=> đpcm

5 tháng 12 2017

giúp mình cái nhé

5 tháng 12 2017

a=34;

27 tháng 7 2018

Áp dụng BDT Bunhiacopxki:

\(\left[\left(\sqrt{x+y}\right)^2+\left(\sqrt{y+z}\right)^2+\left(\sqrt{x+z}\right)^2\right]\left[\frac{x^2}{\left(\sqrt{x+y}\right)^2}+\frac{y^2}{\left(\sqrt{y+z}\right)^2}+\frac{z^2}{\left(\sqrt{x+z}\right)^2}\right]\)\(\ge\left(x+y+z\right)^2\)

\(\Leftrightarrow2\left(x+y+z\right)\left(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{x+z}\right)\ge\left(x+y+z\right)^2\)

\(\Leftrightarrow\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{x+z}\ge\frac{x+y+z}{2}\)

10 tháng 2 2016

áp dụng BĐT: a^2/ x+ b^2/ y +c^2/ z >= (a+b+c)^2/ (x+y+z) cho BĐT trên

<=> a^2/(b+c) + b^2/ (a+c) + c/( a+b) >= (a+b+c)^2/ 2(a+b+c) =(a+b+c)/2

<=> a^2/(b+c) + b^2/ (a+c) + c/( a+b) >=(a+b+c)/2 (đpcm)

Dấu "=" xảy ra khi a=b=c

26 tháng 4 2020

BĐT cần  chứng minh tương đương với :

\(\left(a^2b+b^2c+c^2a\right)\left(2+\frac{1}{a^2b^2c^2}\right)\ge9\)

\(\Leftrightarrow2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge9\)

Áp dụng BĐT Cô-si cho 3 số dương ,ta có :

\(a^2b+a^2b+\frac{1}{ab^2}\ge3\sqrt[3]{a^2b.a^2b.\frac{1}{ab^2}}=3a\)

tương tự :  \(b^2c+bc^2+\frac{1}{bc^2}\ge3b\)\(\left(c^2a+ca^2+\frac{1}{ca^2}\right)\ge3c\)

Cộng 3 BĐT trên theo vế, ta được :

\(2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge3\left(a+b+c\right)=9\)

Dấu "=" xảy ra khi a = b = c = 1

8 tháng 5 2018

Áp dụng BĐT Cauchy Sshwarz, ta có:

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\) 

Mà a+b+c>2

\(\Rightarrow VT>1\) (đpcm)