K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2022

a) Khi \(m=1\) thì pt đã cho trở thành \(x^2-2x-10=0\) (*)

pt (*) có \(\Delta'=\left(-1\right)^2-\left(-10\right)=11>0\) 

Do đó (*) có 2 nghiệm phân biệt \(\left[{}\begin{matrix}x_1=\dfrac{-\left(-1\right)+\sqrt{11}}{1}=1+\sqrt{11}\\x_2=\dfrac{-\left(-1\right)-\sqrt{11}}{1}=1-\sqrt{11}\end{matrix}\right.\)

b) Xét pt đã cho \(x^2-mx-10=0\) \(\left(a=1;b=-m;c=-10\right)\)

Nhận thấy \(ac=1\left(-10\right)=-10< 0\) nên pt đã cho luôn có 2 nghiệm phân biệt \(x_1,x_2\).

Áp dụng hệ thức Vi-ét, ta có \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{-m}{1}=m\\x_1x_2=\dfrac{-10}{1}=-10\end{matrix}\right.\)

Ta có \(x_1^2+x_2^2=29\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=29\Leftrightarrow m^2-2\left(-10\right)=29\)\(\Leftrightarrow m^2+20=29\Leftrightarrow m^2=9\Leftrightarrow m=\pm3\)

Vậy để pt đã cho có 2 nghiệm phân biệt thỏa mãn đề bài thì \(m=\pm3\)

a: Khi m=2 thì pt (1) trở thành:

\(x^2-4x+3=0\)

=>(x-1)(x-3)=0

=>x=1 hoặc x=3

13 tháng 1 2022

Còn phần b nữa mà bạn ơi

19 tháng 4 2021

a) Với m=1,ta có:

x2-2.1.x+2.1-2=0

<=> x2-2x=0

<=> x(x-2)=0

<=> x=0 hoặc x-2=0

<=> x=0 hoặc x=2

a) Thay \(m=2\) vào phương trình, ta được:

 \(x^2-4x+1=0\) \(\Leftrightarrow x=2\pm\sqrt{3}\)

  Vậy ...

b) Ta có: \(\Delta'=m^2-m+1=\left(m-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt 

b) Ta có: \(\text{Δ}=\left(-2m\right)^2-4\cdot1\cdot\left(m-1\right)=4m^2-4m+4=\left(2m-1\right)^2\ge0\forall m\)

nên phương trình luôn có nghiệm với mọi m

\(\Delta=\left(-2m\right)^2-4\left(m^2-m+1\right)\)

=4m^2-4m^2+4m-4=4m-4

Để (1) có 2 nghiệm thì 4m-4>=0

=>m>=1

 

2 tháng 12 2019

a, Với m= 2, ta có 2 x 2 − 4 x + 2 = 0 ⇔ x = 1                                              

b) Phương trình (1) có hai nghiệm  x 1 , x 2  khi và chỉ khi  Δ ' ≥ 0 ⇔ − 2 ≤ m ≤ 2

Theo Vi-et , ta có:  x 1 + x 2 = m          1 x 1 . x 2 = m 2 − 2 2    2

Theo đề bài ta có:  A = 2 x 1 x 2 − x 1 − x 2 − 4 = m 2 − 2 − m − 4 = m − 3 m + 2

Do  − 2 ≤ m ≤ 2  nên  m + 2 ≥ 0 m − 3 ≤ 0 . Suy ra  A = m + 2 − m + 3 = − m 2 + m + 6 = − m − 1 2 2 + 25 4 ≤ 25 4

Vậy  MaxA = 25 4  khi  m = 1 2 .

11 tháng 4 2019

1) Với m= 2 PT trở thành  x 2 − 4 x + 3 = 0  

Giải phương trình tìm được các nghiệm  x = 1 ;   x = 3.  

2) Ta có  Δ ' = m 2 − m 2 + 1 = 1 > 0 , ∀ m .  

Do đó, phương trình (1) luôn có hai nghiệm phân biệt.

Từ giả thiết ta có x i 2 − 2 m x i + m 2 − 1 = 0 , i = 1 ; 2. x i 3 − 2 m x i 2 + m 2 x i − 2 = x i x i 2 − 2 m x i + m 2 − 1 + x i − 2 = x i − 2 , i = 1 ; 2.  

Áp dụng định lí Viét cho phương trình (1) ta có  x 1 + x 2 = 2 m ; x 1 . x 2 = m 2 − 1  

Ta có

  x 1 − 2 + x 2 − 2 = 2 m − 4 ; x 1 − 2 x 2 − 2 = x 1 x 2 − 2 x 1 + x 2 + 4 = m 2 − 1 − 4 m + 4 = m 2 − 4 m + 3

Vậy phương trình bậc hai nhận  x 1 3 − 2 m x 1 2 + m 2 x 1 − 2 ,   x 2 3 − 2 m x 2 2 + m 2 x 2 − 2  là nghiệm là x 2 − 2 m − 4 x + m 2 − 4 m + 3 = 0.

a*c<0

=>Phương trình luôn có hai nghiệm

x1^2+x2^2=12

=>(x1+x2)^2-2x1x2=12

=>(2m)^2-2*(-2)=12

=>4m^2+4=12

=>m^2+1=3

=>m^2=2

=>\(m=\pm\sqrt{2}\)

NV
30 tháng 3 2023

\(ac=-2< 0\Rightarrow\) phương trình đã cho luôn có 2 nghiệm (trái dấu) 

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-2\end{matrix}\right.\)

\(x_1^2+x_2^2=12\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=12\)

\(\Leftrightarrow4m^2+4=12\)

\(\Rightarrow m^2=2\Rightarrow m=\pm\sqrt{2}\)

25 tháng 4 2019

a) Với m = - 1

\(Pt:x^2+2x-8=0\)

\(\Delta'=b'^2-ac=1+8=9\)

\(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{-1+3}{1}=2\)

\(x_2=\frac{-b'-\sqrt{\Delta'}}{a}=\frac{-1-3}{1}=-4\)

b)  \(\frac{1}{x_1}+\frac{1}{x_2}=16\Leftrightarrow\frac{x_1+x_2}{x_1x_2}=16\)

\(\Leftrightarrow\frac{\frac{-b}{a}}{\frac{c}{a}}=16\Leftrightarrow\frac{-b}{c}=16\)

\(\Leftrightarrow\frac{2m}{m-7}=16\Leftrightarrow2m=16m-112\)

\(\Leftrightarrow14m=112\Leftrightarrow m=8\)