Cho \(\Delta\)ABC có 3 góc nhọn (AB<AC).Kẻ các đường cao AD,BE,CF cắt nhau tại H.Chứng minh:
a) \(\Delta\)ABE đồng dạng với \(\Delta\)ACF
b) AF.AB=AE.AC
c) \(\Delta\)AEF đồng dạng với \(\Delta\)ABC
d) \(\Delta\)EBC đồng dạng với \(\Delta\)DAC
e) EH là phân giác của góc DEF
a) Xét ΔABE vuông tại E và ΔACF vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔABE∼ΔACF(g-g)
b) Ta có: ΔABE∼ΔACF(cmt)
nên \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AF\cdot AB=AE\cdot AC\)(đpcm)
c) Ta có: \(AF\cdot AB=AE\cdot AC\)(cmt)
nên \(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)(cmt)
\(\widehat{BAC}\) chung
Do đó: ΔAEF∼ΔABC(c-g-c)
d) Xét ΔEBC vuông tại E và ΔDAC vuông tại D có
\(\widehat{DCA}\) chung
Do đó: ΔEBC∼ΔDAC(g-g)