Tìm a,b \(\in\) N* sao cho : \(\frac{1}{a}+\frac{1}{b}=\frac{1}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{a}+\frac{1}{b}=1\)
\(\frac{a+b}{ab}-1=0\)
\(\frac{a-ab+b}{ab}=0\)
\(\Rightarrow a-ab+b=0\)
\(a-1-b\left(a-1\right)=-1\)
\(\left(a-1\right)\left(1-b\right)=-1\)
\(\Rightarrow a-1=1;1-b=-1\) hoặc \(a-1=-1;1-b=1\)
\(\Rightarrow\left(a;b\right)=\left(0;0\right);\left(2;2\right)\)
a và b ko thể bằng 0 vì thực chất phân sô là một phép chia và phép chia ko có số chia bằng0
Giả sử:0<a<b<c
=>1/a>1/b>1/c
=>1/a+1/b+1/c<1/a+1/a+1/a
17/18<3/a
<=>51/54<51/17a=>54>17a
3>a
Mà a thuộc N=>a={1;2}
Với a=1,ta có:1+1/b+1/c=17/18
1/b+1/c=-1/18
Mà b;c thuộc N=>1/b+1/c ko thể là số nguyên âm(loại)
Với a=2.Ta có:1/2+1/b+1/c=17/18
1/b+1/c=17/18 - 1/2=4/9
Vì 1/b>1/c nên :1/b+1/b>4/9
<=>2/b>4/9
4/2b>4/9
=>2b<9=>b<4=>b={1;2;3;4}(1)
Mà 1/b+1/c=4/9=>1/b<4/9
<=>4/4b<4/9=>4b>9=>b>2(2)
Từ (1) và(2)=>b={3;4}
Với b=3.Ta có:1/3+1/c=4/9
=>c=9
Với b=4.Ta có:1/4+1/c=4/9
=>c=36/7(loại)
Vậy a=2;b=3;c=9
\(\frac{A}{n}=\frac{4n+4}{n}=4+\frac{4}{n}\)
\(\Rightarrow n\in U\left(4\right)\)
Lập bảng tiếp nhé!
\(\frac{B}{n}=\frac{5n+6}{n}=5+\frac{6}{n}\)
Lập bảng
\(2.\)
a)\(\left(\frac{3}{29}-\frac{1}{5}\right)\cdot\frac{29}{3}=\frac{3}{29}\cdot\frac{29}{3}-\frac{1}{5}\cdot\frac{29}{3}=1-\left(1+\frac{14}{15}\right)=1-1-\frac{14}{15}=\frac{14}{15}\)
b)\(\frac{1}{7}\cdot\frac{5}{9}+\frac{5}{9}\cdot\frac{1}{7}+\frac{5}{9}\cdot\frac{3}{7}=\frac{5}{9}\cdot\left(\frac{1}{7}+\frac{1}{7}+\frac{3}{7}\right)=\frac{5}{9}\cdot\frac{5}{7}=\frac{25}{63}\)
a) \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{a+b}{2ab}\)
\(\Rightarrow\frac{1}{c}=\frac{a+b}{2ab}\Rightarrow ac+bc=2ab=ac-ab=ab-bc=a\left(c-b\right)=b\left(a-c\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right)\)
b) \(\text{Để n nguyên thì P phải nguyên} \)
\(\Rightarrow\frac{2n-1}{n-1}=\frac{2n-2+1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}=\frac{2\left(n-1\right)}{n-1}+\frac{1}{n-1}=2+\frac{1}{n-1}\Rightarrow\frac{1}{n-1}\in Z\)
=> n-1 là ước của 1
=> n-1={-1;1)
=> n={0;2)
c) \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}=\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\)\(\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=0\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
b)\(P=\frac{2n-1}{n-1}=\frac{2n-2+1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}=2+\frac{1}{n-1}\)
P là số nguyên \(\Leftrightarrow2+\frac{1}{n-1}\in Z\Leftrightarrow\frac{1}{n-1}\in Z\Leftrightarrow1⋮n-1\Leftrightarrow n-1\inƯ\left(1\right)\)
\(\Leftrightarrow n-1\in\left\{-1;1\right\}\Leftrightarrow n\in\left\{0;2\right\}\)
c)\(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)
\(\Rightarrow\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=\frac{0}{29}=0\)
\(\Rightarrow12x-8y=0,6z-12x=0,8y-6z=0\)
\(\Rightarrow12x=8y,6z=12x,8y=6z\)
\(\Rightarrow12x=8y=6z\)
\(\Rightarrow\frac{12x}{24}=\frac{8y}{24}=\frac{6z}{24}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
\(\frac{1}{4}=\frac{3}{12}=\frac{2}{12}+\frac{1}{12}=\frac{1}{6}+\frac{1}{12}\)
Vậy: \(\frac{1}{a}=\frac{1}{6}\) và \(\frac{1}{b}=\frac{1}{12}\)
Vi 1/a + 1/b = 1/4 nen 1/a < 1/4 suy ra a > 4 (1)
Do vai tro cua a , b binh dang nen gia su a < b suy ra 1/a > 1/b
Ta co 1/a + 1/a > 1/a + 1/b
2/a > 1/4 = 2/8 suy ra a < 8 (2)
Tu (1) va (2) suy ra 4 < a < 8 nen a thuoc { 5 ; 6 ;7 }
+Voi a = 5 thi 1/b = 1/4 - 1/5 = 1/20, chon
+Voi a = 6 thi 1/b = 1/4 - 1/6 = 2/24 = 1/12, chon
+Voi a = 7 thi 1/b = 1/4 - 1/7 = 3/28, loai
Vay a=5,b=20 ; a=6,b=12