Cho 2 số dương x,y thỏa x+y=\(3\sqrt{xy}\). Tìm \(\frac{x}{y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+\sqrt{x+yz}=x+\sqrt{x\left(x+y+z\right)+yz}=x+\sqrt{x^2+yz+x\left(z+y\right)}\)
\(\ge x+\sqrt{2\sqrt{x^2yz}+x\left(y+z\right)}=x+\sqrt{x\cdot2\sqrt{yz}+x\left(y+z\right)}=x+\sqrt{x\left(y+z+2\sqrt{yz}\right)}\)
\(=x+\sqrt{x\left(\sqrt{y}+\sqrt{z}\right)^2}=x+\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)\)
\(\Rightarrow\frac{x}{x+\sqrt{x+yz}}\le\frac{x}{x+\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
tương tự :
\(\frac{y}{y+\sqrt{y+xz}}\le\frac{\sqrt{y}}{\sqrt{y}+\sqrt{x}+\sqrt{z}}\)
\(\frac{z}{z+\sqrt{z+xy}}\le\frac{\sqrt{z}}{\sqrt{z}+\sqrt{x}+\sqrt{y}}\)
cộng vế theo vế ta được
\(\frac{x}{x+\sqrt{x+yz}}+\frac{y}{y+\sqrt{y+zx}}+\frac{z}{z+\sqrt{z+xy}}\le\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)
dấu "=" xảy tra khi x=y=z=1/3
\(3=x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\)
\(\Rightarrow xyz\le1\)
\(\sqrt[3]{x^2}+\sqrt[3]{y^2}+\sqrt[3]{z^2}\le\frac{x^2+1+1}{3}+\frac{y^2+1+1}{3}+\frac{z^2+1+1}{3}=3\)
Ta co:
\(A=\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}=\frac{x\sqrt[3]{x}}{\sqrt[3]{xyz}}+\frac{y\sqrt[3]{y}}{\sqrt[3]{xyz}}+\frac{z\sqrt[3]{z}}{\sqrt[3]{xyz}}\)
\(\ge x\sqrt[3]{x}+y\sqrt[3]{y}+z\sqrt[3]{z}\)
\(\Rightarrow3A\ge3\left(x\sqrt[3]{x}+y\sqrt[3]{y}+z\sqrt[3]{z}\right)\ge\left(x\sqrt[3]{x}+y\sqrt[3]{y}+z\sqrt[3]{z}\right)\left(\sqrt[3]{x^2}+\sqrt[3]{y^2}+\sqrt[3]{z^2}\right)\)
\(\ge\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)
\(\Rightarrow A\ge xy+yz+zx\)
Áp dụng BĐT Cauchy - Schwarz, ta có: \(3\left(x^2+y^2+z^2\right)=\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}=3=x^2+y^2+z^2\)(Do \(x^2+y^2+z^2=3\))
Ta có: \(\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{zx}}+\frac{z}{\sqrt[3]{xy}}=\frac{x}{\sqrt[3]{yz.1}}+\frac{y}{\sqrt[3]{zx.1}}+\frac{z}{\sqrt[3]{xy.1}}\)
\(\ge\frac{x}{\frac{y+z+1}{3}}+\frac{y}{\frac{z+x+1}{3}}+\frac{z}{\frac{x+y+1}{3}}\)\(=\frac{3x}{y+z+1}+\frac{3y}{z+x+1}+\frac{3z}{x+y+1}\)
\(=\frac{3x^2}{xy+zx+x}+\frac{3y^2}{yz+xy+y}+\frac{3z^2}{zx+yz+z}\)\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)+\left(x+y+z\right)}\)(Theo BĐT Cauchy - Schwarz dạng Engle)
\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)+x^2+y^2+z^2}=\frac{3\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=3=x^2+y^2+z^2\)
\(\ge xy+yz+zx\)
Đẳng thức xảy ra khi x = y = z = 1
\(\frac{\left(x+y+z\right)^2}{3}\ge xy+yz+zx\Rightarrow x+y+z\ge3\)
\(P=\frac{x^2}{\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}}+\frac{y^2}{\sqrt{\left(y+2\right)\left(y^2-2y+4\right)}}+\frac{z^2}{\sqrt{\left(z+2\right)\left(z^2-2z+4\right)}}\)
\(\Rightarrow P\ge\frac{\left(x+y+z\right)^2}{\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}+\sqrt{\left(y+2\right)\left(y^2-2y+4\right)}+\sqrt{\left(z+2\right)\left(z^2-2z+4\right)}}\)
\(\Rightarrow P\ge\frac{2\left(x+y+z\right)^2}{\left(x+2+x^2-2x+4\right)+\left(y+2+y^2-2y+4\right)+\left(z+2+z^2-2z+4\right)}\)
\(\Rightarrow P\ge\frac{2\left(x+y+z\right)^2}{\left(x^2+y^2+z^2\right)-\left(x+y+z\right)+18}=\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-\left(x+y+z\right)-2\left(xy+yz+zx\right)+18}=\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-\left(x+y+z\right)+12}\)
Dự đoán Min P=1 khi x+y+z=3
Đặt \(t=x+y+z\ge3\)
\(\Rightarrow P\ge\frac{2t^2}{t^2-t+12}\Rightarrow P-1\ge\frac{t^2+t-12}{t^2-t+12}=\frac{\left(t-3\right)\left(t+4\right)}{t^2-t+12}\ge0\)
\(\Rightarrow P\ge1\)
Câu hỏi của phan tuấn anh - Toán lớp 9 - Học toán với OnlineMath cái này y hệt, tham khảo đi nếu vẫn chưa làm dc thì nhắn cho mk
Đoạn cuối của cô Nguyễn Linh Chi em có 1 cách biến đổi tương đương cũng khá ngắn gọn ạ
\(RHS\ge2\cdot\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)
Theo đánh giá của cô Nguyễn Linh Chi thì \(xy+yz+zx\ge x+y+z\ge3\)
Ta cần chứng minh:\(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\ge\frac{1}{2}\)
Thật vậy,BĐT tương đương với:
\(2\left(x+y+z\right)^2\ge x^2+y^2+z^2-x-y-z+18\)
\(\Leftrightarrow\left(x+y+z\right)^2+x+y+z-12\ge0\)
\(\Leftrightarrow\left(x+y+z+4\right)\left(x+y+z-3\right)\ge0\) ( luôn đúng với \(x+y+z\ge3\) )
=> đpcm
Áp dụng: \(AB\le\frac{\left(A+B\right)^2}{4}\)với mọi A, B
Ta có:
\(x^3+8=\left(x+2\right)\left(x^2-2x+4\right)\le\frac{\left(x+2+x^2-2x+4\right)^2}{4}\)
=> \(\sqrt{x^3+8}\le\frac{x^2-x+6}{2}\)
=> \(\frac{x^2}{\sqrt{x^3+8}}\ge\frac{2x^2}{x^2-x+6}\)
Tương tự
=> \(\frac{x^2}{\sqrt{x^3+8}}+\frac{y^2}{\sqrt{y^3+8}}+\frac{z^2}{\sqrt{z^3+8}}\)
\(\ge\frac{2x^2}{x^2-x+6}+\frac{2y^2}{y^2-y+6}+\frac{2z^2}{z^2-z+6}\)
\(=2\left(\frac{x^2}{x^2-x+6}+\frac{y^2}{y^2-y+6}+\frac{z^2}{z^2-z+6}\right)\)
\(\ge2\frac{\left(x+y+z\right)^2}{x^2-x+6+y^2-y+6+z^2-z+6}\)
\(=2\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)(1)
Ta có: \(x+y+z\le xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\) với mọi x, y, z
=> \(\left(x+y+z\right)^2-3\left(x+y+z\right)\ge0\)
=> \(\left(x+y+z\right)\left(x+y+z-3\right)\ge0\)
=> \(x+y+z\ge3\)với mọi x, y, z dương
Và \(x^2+y^2+z^2=\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\le\left(x+y+z\right)^2-2\left(x+y+z\right)\)
Do đó: \(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)
\(\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2-3\left(x+y+z\right)+18}\)
Đặt: x + y + z = t ( t\(\ge3\))
Xét hiệu: \(\frac{t^2}{t^2-3t+18}-\frac{1}{2}=\frac{t^2+3t-18}{t^2-3t+18}=\frac{\left(t-3\right)\left(t+6\right)}{\left(t-\frac{3}{2}\right)^2+\frac{63}{4}}\ge0\)với mọi t \(\ge3\)
Do đó: \(\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2-3\left(x+y+z\right)+18}\ge\frac{1}{2}\)(2)
Từ (1); (2)
=> \(\frac{x^2}{\sqrt{x^3+8}}+\frac{y^2}{\sqrt{y^3+8}}+\frac{z^2}{\sqrt{z^3+8}}\ge2.\frac{1}{2}=1\)
Dấu "=" xảy ra <=> x= y = z = 1
\(\begin{cases}\sqrt{xy}+\frac{1}{\sqrt{xy}}=\frac{5}{2}\\\sqrt{x}+\sqrt{y}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=\frac{9}{2}\end{cases}\)
<=>\(\begin{cases}xy+1=\frac{5\sqrt{xy}}{2}\\\sqrt{xy}.\left(\sqrt{x}+\sqrt{y}\right)+\sqrt{x}+\sqrt{y}=\frac{9\sqrt{xy}}{2}\end{cases}\)
Đặt P=\(\sqrt{xy}\);S=\(\sqrt{x}+\sqrt{y}\)(S2\(\ge\)4P)
Ta có HPT: \(\begin{cases}P^2+1=\frac{5P}{2}\\S.P+P=\frac{9P}{2}\end{cases}\)
Tới đây dễ tự làm
TA CÓ:
\(Q=\frac{x\left(\sqrt{x+zy}-x\right)}{x+yz-x^2}+\frac{y\left(\sqrt{y+zx}-y\right)}{y+zx-y^2}+\frac{z\left(\sqrt{xy+z}-z\right)}{z+xy-z^2}\)
\(=\frac{x\left(\sqrt{x\left(x+y+z\right)+yz}-x\right)}{x\left(x+y+z\right)+yz-x^2}+\frac{y\left(\sqrt{y\left(x+y+z\right)+zx}-y\right)}{y\left(x+y+z\right)-y^2+zx}+\frac{z\left(\sqrt{xy+z\left(x+y+z\right)}-z\right)}{z\left(x+y+z\right)+xy-z^2}\)
\(=\frac{x\left(\sqrt{\left(x+y\right)\left(z+x\right)}-x\right)}{xy+yz+zx}+\frac{y\left(\sqrt{\left(x+y\right)\left(y+z\right)}-y\right)}{xy+yz+zx}+\frac{z\left(\sqrt{\left(y+z\right)\left(z+x\right)}-z\right)}{xy+yz+za}\)
ÁP DỤNG BĐT CÔ-SI TA ĐƯỢC:
\(Q\le\frac{x\left(\frac{x+y+z+x}{2}-x\right)}{xy+zx+yz}+\frac{y\left(\frac{x+y+z+y}{2}-y\right)}{xy+yz+zx}+\frac{z\left(\frac{x+y+z+z}{2}-z\right)}{xy+yz+zx}\)
\(=\frac{xy+zx}{2\left(xy+yz+zx\right)}+\frac{xy+yz}{2\left(xy+yz+zx\right)}+\frac{yz+zx}{2\left(xy+yz+zx\right)}=1\)
DẤU BẰNG XẢY RA \(\Leftrightarrow x=y=z=\frac{1}{3}\)
\(x+y=3\sqrt{xy}\)(1) . Vì x,y > 0 nên chia cả hai vế của (1) cho y>0 được:
\(\frac{x}{y}+1=3.\sqrt{\frac{x}{y}}\)(2)
Đặt \(\sqrt{\frac{x}{y}}=t>0\) , thay vào (2) được :
\(t^2-3t+1=0\)
Giải ra được \(t=\frac{3+\sqrt{5}}{2}\)(t/m) hoặc \(t=\frac{3-\sqrt{5}}{2}\)(t/m)
Vậy \(\frac{x}{y}=\frac{14+6\sqrt{5}}{2}\)hoặc \(\frac{x}{y}=\frac{14-6\sqrt{5}}{2}\)