Cho đường tròn tâm O, đường kính AB. M là một điểm nằm trên đoạn thẳng OB (M khác O và khác B). Đường thẳng d qua M và vuông góc với AB cắt đường tròn (O) tại C, D. Trên tia MD lấy điểm E nằm ngoài đường tròn (O). Đường thẳng AE cắt (O) tại điểm thứ hai I khác A, đường thẳng BE cắt (O) tại điểm thứ hai K khác B. Gọi H là giao điểm của BI và d.
a. Chứng minh tứ giác MBEI nội tiếp được trong một đường tròn. Xác định tâm của đường tròn này.
b. Chứng minh các tam giác IEH và MEA đồng dạng với nhau.
c. Chứng minh EC.ED = EH.EM
d Chứng minh khi E thay đổi, đường thẳng HK luôn đi qua một điểm cố định
a/ Ta có
^AIB=90 (góc nt chắn nửa đường tròn) => BI vuông góc AE
d vuông góc với AB tại M
=> M và I cùng nhìn BE dưới 1 góc 90 => M; I cùng nằm trên đường tròn đường kính BE => MBEI là tứ giác nội tiếp
b/ Xét tam giác vuông MEA và tam giác vuông IEH có ^AEM chung => tg MEA đồng dạng với tg IEH
d/ Xét tg ABE có
BI vuông góc AE
ME vuông góc AB
=> H là trực tâm cuat tg ABE
Ta có ^AKB =90 (góc nt chắn nửa đường tròn => AK vuông góc với BE
=> AK đi qua H (trong tam giác 3 đường cao đồng quy
=> Khi E thay đổi HK luôn đi qua A cố định
Cô hướng dẫn nhé :)
a. Ta thấy góc MBE = góc BIE = 90 độ nên từ giác MBEI nội tiếp đường tròn đường kính BE, vậy tâm là trung điểm BE.
b. \(\Delta IEH\sim\Delta MEA\left(g-g\right)\) vì có góc EIH = góc EMA = 90 độ và góc E chung.
c. Từ câu b ta có : \(\frac{IE}{EM}=\frac{EH}{EA}\Rightarrow EH.EM=IE.EA\) Vậy ta cần chứng minh \(EC.ED=IE.EA\)
Điều này suy ra được từ việc chứng minh \(\Delta IED\sim\Delta CEA\left(g-g\right)\)
Hai tam giác trên có góc E chung. góc DIE = góc ACE (Tứ giác AIDC nội tiếp nên góc ngoài bằng góc tại đỉnh đối diện)
d. Xét tam giác ABE, ta thấy do I thuộc đường trong nên góc AIB = 90 độ. Vậy EM và BI là các đường cao, hay H là trực tâm của tam giác ABE. Ta thấy AK vuông góc BE, AH vuông góc BE, từ đó suy ra A, H ,K thẳng hàng. Vậy khi E thay đổi HK luôn đi qua A.
Tự mình trình bày để hiểu hơn nhé . Chúc em học tốt ^^