K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2017

A B D C N M E

Từ A kẻ đường thẳng vuông góc với AN cắt CD tại E

Ta có AB=mAD nên \(\frac{AB}{AD}=m\)

Xét \(\Delta ABM\)và  \(\Delta ADE\)có :

góc ABM = góc ADE =90

góc BAM =góc FAD (cùng phụ với góc DAN )

\(\Rightarrow\Delta ABM~\Delta ADF\left(g.g\right)\)\(\Rightarrow\frac{AM}{AF}=\frac{AB}{AD}=m\)\(\Rightarrow\frac{1}{AF}=\frac{m}{AM};\frac{1}{AD}=\frac{m}{AB}\)

Tam giác AFN VUÔNG TẠI A CÓ \(AD⊥FN\)\(\Rightarrow\frac{1}{AD^2}=\frac{1}{AF^2}+\frac{1}{AN^2}\)

                                                      HAY     \(\left(\frac{m}{AB}\right)^2=\left(\frac{m}{AM}\right)^2+\frac{1}{AN^2}\Rightarrow\frac{m^2}{AB^2}=\frac{m^2}{AM^2}+\frac{1}{AN^2}\left(đpcm\right)\)

23 tháng 8 2023

Để chứng minh 1) AE = AN, ta sẽ sử dụng định lí hai đường trung bình của tam giác.Theo định lí hai đường trung bình, AM là đường trung bình của tam giác ABC.Vì vậy, ta có AM = 1/2(AB + AC).Đồng thời, ta cũng có AN là đường trung bình của tam giác ADC.Từ đó, ta có AN = 1/2(AD + AC).Do đó, để chứng minh AE = AN, ta cần chứng minh AE = 1/2(AB + AD).Ta biết rằng AE là đường cao của tam giác ABC với cạnh AB.Vì vậy, ta có AE = √(AB^2 - AM^2) (với AM là đường trung bình của tam giác ABC)Tương tự, ta biết rằng AN là đường cao của tam giác ADC với cạnh AD.Vì vậy, ta cũng có AN = √(AD^2 - AM^2) (với AM là đường trung bình của tam giác ADC)

23 tháng 8 2023

gì vậy?

7 tháng 12 2016

mi tích tau tau tích mi xong tau trả lời nka

việt nam nói là làm