K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

hay \(CH^2=AC^2-AH^2\)

\(\Leftrightarrow AB^2+CH^2=AH^2+BH^2+AC^2-AH^2\)

\(\Leftrightarrow AB^2+CH^2=AC^2+BH^2\)(đpcm)

a: \(AB^2-BH^2=AB^2\)

\(AC^2-CH^2=AH^2\)

Do đó: \(AB^2-BH^2=AC^2-CH^2\)

hay \(AB^2+CH^2=AC^2+BH^2\)

c: AH=4,8cm

BH=3,6cm

CH=6,4cm

3 tháng 2 2019

-tự vẽ hình

a) Áp dụng định lý pytago vào tam giác vuông ABH, ta có:

BH2+AH2=AB2

=> AH2=AB2-BH2(1)

Áp dụng định lý pytago vào tam giác vuông AHC ta có: 

AH2+HC2=AC2

=> AH2=AC2-HC2(2)

Từ (1) và (2) => AB2-BH2=AC2-HC2 => AB2+HC2=AC2+BH2(chuyển vế đổi dấu)

b) Trên đoạn thẳng AB lấy điểm E => AE<AB, trên đoạn thẳng AC lấy điểm F => AF<AC

Áp dụng định lý pytago vào tam giác vuông EAF ta có: 

AE2+AF2=EF2

Áp dụng định lý pytago vào tam giác vuông ABC ta có: 

AB2+AC2=BC2

Mà AE<AB(cmt) => AE2<AB2, AF<AC(cmt) => AF2<AC2

=>AE2+AF2<AB2+AC2 hay EF2<BC2=> EF<BC

c) nghĩ chưa/ko ra >: 

-bn nào giỏi giải hộ =.=

Bài 2: 

a: Xét ΔABC vuông tại B có 

\(AB^2+BC^2=AC^2\)

hay BC=20(cm)

Xét ΔABC vuông tại B có BH là đường cao ứng với cạnh huyền AC

nên \(\left\{{}\begin{matrix}BA^2=AH\cdot AC\\BC^2=CH\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=9\left(cm\right)\\CH=16\left(cm\right)\end{matrix}\right.\)

chị ơi chị làm hết giúp em với ạ

7 tháng 2 2019

a,\(AB^2-BH^2=AC^2-CH^2\left(=AH^2\right)\Rightarrow AB^2+CH^2=AC^2+BH^2\)

b, \(\hept{\begin{cases}EF^2=AE^2+AF^2\\BC^2=AB^2+AC^2\\AE< AB,AF< AC\end{cases}}\Rightarrow EF^2< BC^2\Rightarrow EF< BC\)

c, Tính được BC = 10 cm

\(AH.BC=AB.AC\left(=2S_{ABC}\right)\Rightarrow AH.10=6.8\Rightarrow AH=4,8\left(cm\right)\)

Sau đó áp dụnh định lí Pitago vào tam giác AHB và AHC vuông tại H thì tính được:

BH = 3,6 cm và CH = 6,4 cm

13 tháng 11 2021

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

a: Xét ΔABH vuông tại H có HF là đường cao ứng với cạnh huyền AB

nên \(AF\cdot AB=AH^2\left(1\right)\)

Xét ΔACH vuông tại H có HE là đường cao ứng với cạnh huyền AC

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AF\cdot AB=AE\cdot AC\)